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Heterogeneous architectures characterize today hardware ranging from super-computers to smartphones.

However, in spite of this importance, programming such systems is still challenging. In particular, it is

challenging to map computations to the different processors of a heterogeneous device. In this paper, we

provide a static analysis that mitigates this problem. Our contributions are two-fold: first, we provide a semi-

context-sensitive algorithm, which analyzes the program’s call graph to determine the best processor for each

calling context. This algorithm is parameterized by a cost model, which takes into consideration processor’s

characteristics and data transfer time. Second, we show how to use simulated annealing to calibrate this cost

model for a given heterogeneous architecture. We have used our ideas to build Etino, a tool that annotates C
programs with OpenACC or OpenMP 4.0 directives. Etino generates code for a CPU-GPU architecture without

user intervention. Experiments on classic benchmarks reveal speedups of up to 75x. Moreover, our calibration

process lets Etino avoid slowdowns of up to 720x which trivial parallelization approaches would yield.
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1 INTRODUCTION

Computing systems formed by processors that run at different speeds and that exchange data at
a non-negligible cost have become common among the hardware used today [Cota et al. 2015;
Zahran 2016]. Examples of such settings include general purpose computers equipped with graphics
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processing units (GPUs) [Nickolls and Kirk 2009], smartphones with a main CPU plus a separate
digital signal processor [Satyanarayanan 2011], CPUs accelerated with Field-Programmable Gate
Arrays (FPGAs) [Bacon et al. 2013] and distributed systems in which clients offload work to the
clouds [Armbrust et al. 2010]. Henceforth, we shall call these systems heterogeneous architectures.
The recent ability ofmanufacturers to combine amain computing unit with independent accelerators
has made such configurations a staple in modern commodity hardware [Nickolls and Dally 2010].

The combination of different processing units into a single computational system gives application
developers the capacity to produce more efficient software at a lower cost. Programmers can choose
the best hardware to run each part of a complex application; however, it is not easy to benefit from
this ability [Cao et al. 2012]. Finding a good match between computation and hardware involves
several factors: the cost to transfer data between memory banks, the location of such data, the
relative speed of processors, the affinity between program and execution model, etc [Augonnet
et al. 2011; Barik et al. 2016; Diamos and Yalamanchili 2008; Wu et al. 2015]. As a consequence of
this involved complexity, the design and implementation of high-performance programs that run
on heterogeneous systems is still a task restricted to experts [Singh et al. 2013].
There exist today several tools, ranging from totally dynamic to fully static, that bring het-

erogeneous systems closer to ordinary programmers. However, we believe that they do not, yet,
offer a satisfactory solution to the problem of mapping program parts to fundamentally different
processors. For instance, on the completely dynamic side of this spectrum we have systems such as
StarPU [Augonnet et al. 2011], WASH AMP [Jibaja et al. 2016] and Octopus-Man [Petrucci et al.
2015]. The former, being a library, requires programmers to change their code; the latter two bring
an overhead high enough to make them prohibitive to resource constrained scenarios. On the other
side of this spectrum, we have fully static, ahead-of-time compilers, such as dawncc [Mendonça
et al. 2017, 2016], par4all [Amini et al. 2012; Guelton et al. 2012], ppcg [Verdoolaege et al. 2013]
and Bones [Nugteren and Corporaal 2014]. The first tool, dawncc, offloads to the accelerator every
program part that it can annotate with either OpenACC or OpenMP 4.0 directives. The other three
leave this task to the developer. Both approaches meet with shortcomings. On the one hand, as
we show in Section 5, unrestricted offloading often leads to slowdowns in programs that do not
sport sufficient parallelism. On the other hand, leaving this task to programmers forces them to
understand the code that must be compiled, in addition to the architecture at hand. Furthermore,
this approach is susceptible to all the imprecisions of a human discernment. In this paper, we
address all these limitations.

The goal of this paper is to reduce this gap between programmers and heterogeneous computing
architectures. To this end, we have designed and implemented a static program analysis that matches
hardware and computation. We describe it in Section 3. Our algorithm is partially context-sensitive.
By łpartially", we mean that it runs on a data structure that encodes part of the information
available in the program’s calling contexts. We call such a data structure the Extended Call Graph.
Our algorithm can be parameterized by a cost model; thus, it achieves performance portability
across different architectures. To free developers from the burden of calibrating cost models, we
resort to autotuning, a tendency that has gained momentum recently [Basu et al. 2013]. Along this
direction, Section 4 shows how to use simulated annealing to adjust the parameters of a cost model
for a heterogeneous system.
We have used the proposed algorithm to implement a tool, Etino1, which generates code for

CPU-GPU based systems. Etino is fully automatic. To shield developers from minutia related to

1The name Etino comes from the initials C2H2, which, in our context, stand for łColocação de Computação em Hardware

Heterogêneo" ś Portuguese for Placement of Computation in Heterogeneous Hardware. C2H2 is the formula of Acetylene,

which is called Etino in Portuguese (IUPAC version of Acetileno). We thank Rafaela Salgado for pointing that out to us.
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the computing architecture, Etino combines different techniques to: (i) find parallel regions in C
code [Wolfe 1996]; (ii) estimate the nesting depth of computations [Gulavani and Gulwani 2008]; (iii)
estimate the size of the arrays to be transferred between host and device [Rugina and Rinard 2005];
and (iv) infer the amount of SIMD divergent code [Sampaio et al. 2014] within a target procedure.
These analyses are implemented using the LLVM compiler [Lattner and Adve 2004]. To generate
code, Etino clones functions, and uses an automatic source-to-source compiler, dawncc [Mendonça
et al. 2017], to insert either OpenACC [openacc.org 2012] or OpenMP 4.0 [Bertolli et al. 2014]
directives in these clones.
Section 5 describes an experimental evaluation of Etino. We have tested it in three different

architectures. Each one is formed by a CPU and a GPU, giving us six different processors. To
perform the final translation of C programs annotated with OpenACC directives to CUDA, we
have used pgcc [PGI 2016]. To handle OpenMP 4.0, we have used clang, with a few extensions
of our own craft, necessary to handle features that are currently missing in that compiler (Sec-
tion 5.2). We also show how to use Etino in combination with ppcg [Verdoolaege et al. 2013] to
produce optimized CUDA code (Section 5.3). We have analyzed and run programs taken from four
benchmarks: PolyBench, The Computer Language Benchmarks Game, dawncc’s test suite and
DataMining [Da Mata et al. 2013]. These benchmarks let us show that we can deliver speedups of
almost 190x on embarrassingly parallel programs. Furthermore, Etino prevents slowdowns that
unrestricted parallelization, performed by state-of-the-art tools such as dawncc or ppcg, could
produce. Finally, our techniques can also be applied on irregular programs not usually seen in
parallelization research (Section 5.5). All the results that we produce have been obtained without
the intervention of developers, except for DataMining. In this case, we had to change sparse data
structures, e.g., linked lists, into arrays, so that our tool could infer the memory regions to be
transferred to the GPU. Etino is a complex tool, built over decades of developments in the field of
static analyses. We do not claim its engineering as a novel contribution, as it relies on technology
already described in the literature. However, Etino’s essential idea: the code placement algorithm
that we describe in Section 3, plus the technique to calibrate it, that appears in Section 4, are original
contributions of this paper, which we summarize as follows:
Algorithm: Section 3 describes the first fully static scheduling algorithm for heterogeneous ar-

chitectures. Our technique is totally compiler-based and fully automatic: it does not require
support from a library, operating system, middleware or hardware. This algorithm has been
designed to account for data location, when deciding where to map program parts. It also
handles recursion naturally. Because data location is a dynamic notion, our algorithm is
context-sensitive: if function f , running on processor p, calls д, then д has greater incen-
tive to run on p. For practical reasons, we restrict it to contexts of size 2, i.e., like a 2-CFA
analysis [Shivers 1988].

Calibration: code placement is heavily dependent on the underlying heterogeneous computer
architecture. Therefore, our first contribution, the algorithm, should produce different map-
pings, depending on the available hardware. To deal with this requirement, Section 4 describes
an approach based on simulated annealing to calibrate a cost model for the static-scheduling
algorithm. Therefore, we free the programmer from a tedious and time consuming task.
Calibration also does not require any form of user intervention to converge. To demonstrate
this fact, we have tested it in three architectures.

2 OVERVIEW

We shall use the program of Figure 1 to illustrate the static scheduler that we introduce in this paper.
The program in this example evaluates the matrix expression A + B ×C + D. Function add_cpu
performs matrix addition, and function mul_cpu performs matrix multiplication. The procedure
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void in(float* dst, int N);
void out(float* dst, int N);
// dst = A + B
void add_cpu(float*dst, float*A, float*B, int N) {
  int i, j;
  for (i = 0; i < N; i++) 
    for (j = 0; j < N; j++) 
      dst[i*N+j] = A[i*N+j] + B[i*N+j];
}
// dst = A * B
void mul_cpu(float*dst, float*A, float*B, int N) {
  int i, j, k;
  for (i = 0; i < N; i++)
    for (j = 0; j < N; j++) {
      dst[i*N+j] = .0;
      for (k = 0; k < N; k++)
        dst[i*N+j] += A[i*N+k] * B[k*N+j];
    }
}
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// m1 = m1 * m2 + m3
void mad_cpu(float*m1, float*m2, float*m3, int N) {
  float* aux = (float*)malloc(N*N*sizeof(float));
  mul_cpu(aux, m1, m2, N);
  add_cpu(m1, aux, m3, N); free(aux);
}
int main() {
  int N = 10000;
  float* X = (float*)malloc(N*N*sizeof(float));
  float A[N*N], B[N*N], C[N*N], D[N*N];
  in(A, N); in(B, N); in(C, N); in(D, N);
  add_cpu(X, A, B, N);
  mad_cpu(X, C, D, N);
  out(X, N);
  free(X);
  return 0;
}

Fig. 1. This program shows that a static scheduler must take calling context into consideration.

mad_cpu uses these two functions to execute a multiply-add operation on matrices. Both, add_cpu
and mul_cpu, are embarrassingly parallel routines. The former can be executed in O (1) in a PRAM
machine; the latter in O (lnN ) [Gibbons 1988].

Given this observation, it is tempting to execute these two functions in a GPU. Such task can be
accomplished in several ways. Themost straightforward alternative is to recode both procedures in a
language that can be compiled to the GPU, such as CUDA [Garland 2008; Kirk 2007], OpenCl [Stone
et al. 2010], or PyCUDA [Klöckner et al. 2012]. Another approach would be to use a compiler
that translates C code into GPU binaries, such as Baskaran et al.’s [Baskaran et al. 2010]. Finally,
a developer can use an annotation system like OpenMP 4.0, OpenACC [openacc.org 2012] or
OpenSs [Ayguadé et al. 2009], to indicate which parts of the program in Figure 1 should run on
the GPU. Nevertheless, regardless of the chosen approach, the programmer must decide which
functions run on the GPU or on the CPU.
Not every embarrassingly parallel code benefits from the computational power of a graphics

processing unit. As an example, we consider add_cpu in Figure 1. A high-end GPU is likely to
process this algorithm faster than a modern CPU; however, once we include the time to transfer
the data between host and device, using the GPU may no longer be profitable. Quoting Nvidia’s
Best Practice Guide, łThe complexity of operations should justify the cost of moving data to and from

the devicež2. If we assume that add_cpu manipulates square matrices of N × N cells, then we must
transfer 3N 2 elements to perform N 2 operations ś a ratio of operations to elements of 1:3. On the
other hand, if we consider the procedure mul_cpu, we still transfer 3N 2 elements, but perform N 3

multiply-adds. Thus, we have O (N ) operations per elements, which gives us a much more efficient
use of the accelerator.

The time to move data is of less consequence if said data has already been transferred. Although
an obvious observation, checking the location of data ś statically ś is not trivial. The first call of
function add_cpu, (Figure 1, main:6) reads data in the memory of the processor where main_cpu
has been invoked. The second call of add_cpu (Figure 1, mad_cpu:4) will read data located at
wherever the calling instance of mul_cpu, which comes immediately before, has been invoked,
since the latter produces data read by the former. This observation is true due to the caller-callee
relations between functions. To account for these relations, the algorithm described in Section 3
considers the calling context of functions. The calling context of a given function invocation is the

2http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
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main(CPU)

mad_cpu mad_gpuin out

malloc

add_cpu mul_gpu mul_cpu add_gpu

main

add
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malloc

in out

mul

{external libraries}(a) (b)

Fig. 2. (a) Call graph representing the program in Figure 1. (b) Extended call graph of the same program

mul_gpu(float* dst, float* A, float* B, int N) {
  int i, j, k;

  char RST_AI1 = 0; int N0 = N * N;
  RST_AI1 |= !((dst > A + N0) || (A > dst + N0));
  RST_AI1 |= !((dst > B + N0) || (B > dst + N0));
  RST_AI1 |= !((A > B + N0) || (B > A + N0));
  #pragma acc data pcopyin(A[0:N0],B[0:N0])
              pcopyout(dst[0:N0]) if(!RST_AI1)
  #pragma acc kernels if(!RST_AI1)
  for (i = 0; i < N; i++) {

    for (j = 0; j < N; j++) {

      dst[i*N+j] = .0;

      for (k = 0; k < N; k++)

        dst[i*N+j] += A[i*N+k] * B[k*N+j];

    }

  }

  }}}
}
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add_gpu(float *dst, float *m1, float *m2, int N) {
  int i, j;

  char RST_AI1 = 0; int N0 = N * N;
  RST_AI1 |= !((dst > m1 + N0) || (m1 > dst + N0));
  RST_AI1 |= !((dst > m2 + N0) || (m2 > dst + N0));
  RST_AI1 |= !((m1 > m2 + N0) || (m2 > m1 + N0));
  #pragma acc data pcopyin(m1[0:N0],m2[0:N0])
              pcopyout(dst[0:N0]) if(!RST_AI1)
  #pragma acc kernels if(!RST_AI1)
  for (i = 0; i < N; i++)

    for (j = 0; j < N; j++)

      dst[i*N+j] = m1[i*N+j] + m2[i*N+j];

  }}}
}

void mad(float* m1, float* m2, float* m3, int N) {

  float* aux = (float*)malloc(N*N*sizeof(float));

  mul_gpu(aux, m1, m2, N);
  add_gpu(m1, aux, m3, N);
}

Fig. 3. Code that we generate for the example in Fig. 1.

sequence of calls performed until the invocation occurs. In the example of Figure 1, add_cpu can
be called from two different contexts: (i) main→ add_cpu; and (ii) main→ mad_cpu→ add_cpu.

We summarize calling contexts via a data-structure ś the Extended Call Graph (ECG). This graph
contains clones of functions that can be called from different processors, and tracks caller-callee
relations between them. We have one clone of each function per each processor where that routine
can run. Figure 2 (a) shows the call graph of our running example, and Figure 2 (b) shows its
ECG. Some functions have two clones: one ś the originalś runs on the CPU, the other on the GPU.
Heterogeneous architectures with a wider variety of processors would give us more clones. Edges
with the same line pattern indicate a decision that our algorithm must make: only one of them will
remain in the graph after scheduling is done. For instance, function main has the option of calling
function add_cpu either on the CPU, as originally done, or on the GPU (via add_gpu). Exactly one
of these function calls must be chosen.
The Extended call graph gives us a data structure onto which we can apply a cost model. This

model has two key parameters: data transfer time, and processor affinity. The former estimates the
cost to copy data between devices; the latter estimates the profit to run a certain computation on a
particular device. For reasons that will be made clear in Section 3, once we apply a CPU-GPU cost-
model onto the graph of Figure 2 (b), we find that the first call of add3, at context main : 9, should
run on the CPU. The same model indicates that the second call, at context main : 10 → mad : 4,
should run on the GPU. This difference happens because function mad, the last link in the second

3Henceforth, when talking about routines regardless of where they run, we shall omit suffixes such as _cpu or _gpu
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input:

C/C++ source code

Scheduler:

Section 3

Parser:

Expanded Call Graph

Output:

Scheduling

Simulated Annealing:

Section 4

input:

Training set

(benchmarks)

input:

Target

Architecture

input:

Cost Models for

available processors

Output:
Calibrated cost model
- Processor affinity
- Transfer cost

Annotator:

dawn-cc

Compiler:

(OpenAcc) pgcc

(OpenMP 4.0) clang

output:

C/C++ sources

output:

Executable binary

Fig. 4. Overview of our static scheduler.

context, is set to run on the GPU due to its asymptotic complexity. These results lead us to produce
two versions of function add, one for the CPU, another for the GPU.
Figure 3 shows the code that we generate for this example. Currently, we annotate loops that

must be sent to the graphics processing unit with either OpenACC or OpenMP 4.0 directives.
These directives are inserted without user intervention, by a source-to-source compiler known
as dawncc [Mendonça et al. 2017]. In this example, we end up with two versions of add, the
original, called at main : 9 (Figure 1), and a new procedure, which is invoked in the context
main : 10 → mad : 4. The original mul_cpu routine will no longer be necessary in this program;
hence, it can be removed from the executable binary that we produce. If we run this program on a
12-core Intel Xeon CPU E5-2620 at 2.00GHz, with 16GB of memory, using N = 3,000, then it takes
656.0 seconds to finish4. If we map add and mul to an Nvidia GTX 670, then our example takes 3.52
seconds to finish. Finally, if we leave the first call of add onto the CPU, and send the second to the
GPU, then we gain a slight edge, finishing in 3.30 seconds. To give the reader some perspective
on these numbers, we have re-written the program to use some highly-tuned BLAS (short for
Basic Linear Algebra Subprograms) libraries. In this experiment, we are using ATLAS5, we run the
re-written version of Figure 1 in 1.80 seconds using the 12 Intel CPUs. If we move to cuBLAS, then
we shrink this number yet a bit, reaching 1.50 seconds on the Nvidia GPU. This example lets us
show that we can bring a trivial, naïve program close to a state-of-the-art implementation without
programmer’s intervention.
Figure 4 shows the pipeline of this work. Section 3 presents our first contribution, a static

scheduler that allocates functions to processors. This algorithm reads a source code, written
in C, plus cost models for all kinds of processors available. Cost models are algorithms that
have architecture-dependent parameters to estimate how costly a certain computation is. These
parameters can be tuned automatically via some probabilistic search method. Section 4 presents
the autotuning procedure we propose, which is executed only once for a given architecture, and
is based on simulated annealing. Once we obtain a scheduling, programmers can either insert
annotations manually in the code, or resort to an automatic annotator, as we do in this paper.
Finally, the annotated program is given to an OpenACC or OpenMP 4.0 compliant compiler, which
produces the final executable. Since the produced annotations might schedule some parts of the
program to run on the GPU, such compiler will typically have an intermediate step that transforms
chosen functions into CUDA or OpenCL kernels.

4We have compiled the original program in Figure 1, and the program that we produce automatically, with pgcc -O2

-Munroll=c:1 -Mnoframe -Mlre -Mautoinline -Mvect=sse -Mcache_align -Mflushz -Mpre.
5ATLAS is available at http://math-atlas.sourceforge.net/. We enabled it with pgcc -lblas -fast.
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3 CONTEXT-AWARE STATIC SCHEDULING

This section introduces our notion of an Extended Call Graph (ECG), and defines the static sched-
uling problem (SSP). Given an ECG augmented with a cost model, the dynamic programming
algorithm of Section 3.4 lets us find an optimal solution to this problem.

3.1 The Extended Call Graph

As we have explained in Section 2, to find good matches between code and computation, we resort
to a data structure that we have named the Extended Call Graph (ECG). Its definition follows
from the notion of a Call Graph. Call graphs are a well-known data-structure, but for the sake of
completeness we define them again:

Definition 3.1 (Call Graph (CG)). Given a program P , its call graph CGP is formed as follows:
each function f in P gives origin to a vertex vf . If function f calls function д, then CGP contains
an edge vf → vд .

Example 3.2. Figure 2 (a) shows the call graph of the example in Figure 1. Each vertex represents
one function, and each function in the program is represented by a unique vertex. We use one edge
to represent multiple calls between functions. Thus, although main calls function in four times
(line 5 of Figure 1), the call graph contains one edge from main to in.

The Extended Call Graph of a program is a version of its call graph that we use to implement
our static scheduler, where nodes include context information. We define it as follows:

Definition 3.3 (Extended Call Graph (ECG)). Given a program P, plus n processors p1, . . . ,pn ,
its Extended Call Graph is an expansion of CGP , produced as follows. For each function f that
can run on a processor pi , we produce a node vi/f . If CGP contains an edge vf → vд , then ECGP

contains an edge vi/f → vj/д , for each possible i and j.

Example 3.4. Figure 2 (b) shows an extended call graph. Functions add, mad and mul can be
called on the GPU or on the CPU; hence, they generate two vertices each in the ECG.

The extended call graph gives us some context information about a program, albeit in a very
limited way6. Traditionally, a calling context is the sequence of function activations. In our case, we
shall call a context an invocation of a function f at a processor p. This arrangement corresponds to
keeping track of contexts of depth 1, e.g., the context of f will let us know the processor running
the last function active when f was invoked. Each pair formed by a function f and a processor
pi , if f may run on pi , leads to the creation of a new vertex vi/f . For each function call f → д in
the program’s call graph, we’ll create nf × nд edges in the extended call graph, where nx is the
number of processors that can execute function x . Because we do not keep track of calling sites
within the same function, if д is called at two different points within f , we still have only one edge
vi/f → vj/д in the extended call graph.

Discussion: shallow contexts. Our representation of context is shallow: we do not distinguish
different invocation sites of the same callee within a caller. This decision is a tradeoff between pre-
cision and pragmatism. It is common wisdom that context sensitive analyses are expensive [Lhoták
and Hendren 2006; Whaley and Lam 2004]. The consequence of our decision is that if a given
function д is scheduled to run on processor p when called from f , then every call of д from f shall
be invoked at p.

6For the standard representation of calling contexts, see Nielson et al.’s Principles of Program Analysis [Nielson et al. 2005,

Ch.2].
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3.2 Cost Models

A cost model assigns a numerical cost to each node and each edge of the ECG. Values assigned
to nodes represent the cost of running a certain function on a certain processor. These numbers
are estimated using various criteria of processor affinity. Values assigned to edges represent the
cost of passing data between functions. If a call happens between functions running on different
processors, this cost shall account for the data transfer that is implied in such an invocation. We
define this notion as follows:

Definition 3.5 (Cost Model). A cost model is a pair of functions, Cv and Ce . Cv maps ECG nodes
to costs: Cv (i, f ) is the cost of invoking function f in processor pi . Ce maps ECG edges to costs:
Ce (vi/f ,vj/д ) is the cost of function f calling function д, while f runs on pi , and д runs on pj .

3.3 Static Scheduling

The static scheduling problem consists of finding an assignment of functions to processors in such
a way to minimize the cost of executing a program. Definition 3.6 states the problem for a ECG of
single root. Every call graph has a single root, henceforth called main. However, it is possible that
its corresponding ECG has multiple roots, one for each processor where main might run. In this
case, we convert it to a singly-rooted ECG by creating a mock root node v•/root, and adding edges
from it to every node that represents main. We let Cv (v•/root) = 0.

Definition 3.6 (The Static Scheduling Problem (SSP)). Given a ECG G, derived from a call graph
CG, plus a cost model CM, determine a subgraph G ′ ⊆ G, with these two properties:

(1) For every edge vf → vд ∈ CG and every processor pi that can execute function f , there
must exist one, and only one, edgevi/f → vj/д ∈ G

′, where pj is a processor that can execute
function д.

(2) The cost of v•/root, with regards to CM, must be minimal, where v•/root is the root node of
G.

Example 3.7. A solution to the static scheduling problem is a subgraph of the ECG. Figure 6
shows such a subgraph. The part of this subgraph that is reachable from the root node represents
the program that we shall schedule to execute.

3.4 An Optimal Solution to SSP

We want to build the graph S that minimizes the cost of the root node of the extended call graph.
Algorithm 1 builds this graph. This algorithm relies on the fact that SSP has an optimal substructure,
as we state in Theorem 3.9. A problem is said to have optimal substructure if an optimal solution to
it can be constructed efficiently from optimal solutions of its subproblems [Bellman 1957, Chap.III.3].
In our case, the subproblem is to compute the scheduling starting at a given node of the ECG. The
cost T of a node is defined as follows:

Definition 3.8 (Scheduling Cost of a Node). The scheduling cost of vi/f is recursively defined by
the expression below, where E = vi/f → vj/д , and S is a graph that represents a solution of SSP,
starting at vj/д

T (vi/f ) = Cv (vi/f ) +
∑

E∈S

(T (vj/д ) +Ce (E))

T (v•/root) is the objective function of SSP (see Def. 3.6).

Intuitively, T (vi/f ) gives us the cost of running function f , i.e., Cv (vi/f ), plus the cost of ex-
ecuting all the other functions invoked from f . Thus, T (v•/root) gives us the cost of the whole
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program execution according to the cost model; hence, it is the objective function that we want to
minimize. Because of its optimal substructure,T can be computed in polynomial time by a dynamic
programming algorithm.

Data: ECG G , CM (Cv ,Ce )

Result: S

SCCs = findStronglyConnectedComponents(G )

C = new Table; S = new Graph
for scc in reverseTopologicalSort(SCCs) do

for vi/f in scc do
C[vi/f ] = Cv (f , pi )

for g in calledFunctions(f) do
px = argminpj ∈Proc (Ce (vi/f ,vj/д ) +C[vj/д ])

if vx /д not in scc then
C[vi/f ] = C[vi/f ] +Ce (vi/f ,vx /д ) +C[vx /д ]

S = S ∪ {vi/f → vx /д }

end

end

end

end

Algorithm 1: Static scheduler. This algorithm uses the following data structures: Scheduler
S , graph introduced in Definition 3.6. Cumulative cost C : Node 7→ N, the cost of running
the computation denoted by node v . Local cost Cv : (Node) 7→ N, the cost of running the
instructions that constitute function f , except call instructions, at processor pi . Transfer cost
Ce : (Node × Node) 7→ N, the cost of transferring data from a node vi/f to another node vj/д .

Theorem 3.9. SSP has optimal substructure.

Proof: SSP takes a cost model CM as input. This cost model considers that the cost of

two different calls to the same function on the same processor never varies. Furthermore,

the cost of transferring parameters and results only depends on the processors on which

the call occurs. Thus, to compute T (vi/f ), we compute T (vj/д ) independently, for each

function д that f invokes. The implication of this fact is that T , in Definition 3.8, is

a Bellman Equation [Bellman 1957], a necessary enabler of a dynamic programming

algorithm. Therefore, given a node of the ECG, all decisions that must be made regarding

where to place each of the function calls are independent. As such, we can optimize each

decision independently by considering all possible options.

Algorithm 1 first finds the strongly connected components of the ECG (for example using Tarjan’s
algorithm), and orders them in reverse topological order. In the absence of recursion, each strong
component corresponds to a single node in the ECG. For each node vi/f , in reverse topological
order, Algorithm 1 builds a subgraph S starting at vi/f to solve SSP. This step runs independently
for each node; thus, this subgraph is a static scheduling for that node. Algorithm 1 uses a tableC to
remember the cumulative cost associated with each node that it has visited. Because of the reverse
topological order, it is guaranteed that, once a node vi/f is visited, all the other nodes on which
vi/f depends were already visited and had their total costs placed in C .

Complexity. The ECG has O ( |F | |P |) nodes, being F the set of functions in the original program
and P the set of processors in the architecture at hand. Each one of the E edges in the original
call graph originates O ( |P |) edges in the solution graph, and each edge is chosen among O ( |P |)

options; hence, Algorithm 1’s time complexity isO (E |P |2). Since |P | is usually a small constant (e.g.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 50. Publication date: October 2017.



50:10Gabriel Poesia, Breno Guimarães, Fabrício Ferracioli, and Fernando MagnoQuintão Pereira

mad_cpu

add_cpu mul_gpu mul_cpu add_gpu

C
v
: 100 C

v
: 1,000 C

v
: 100,000 C

v
: 10

C
e
: 0 C

e
: 200 C

e
: 200 C

e
: 0

(B) Cost to call add at mad
= min(CPU, GPU)
= min(0 + 100, 200 + 10)    
= 100

(A) Cost to call mul at mad
= min(CPU, GPU)
= min(100,000, 200 + 1,000)
= 1,200

(C) Cost to run mad on CPU
= 10 + 100 + 1,200 = 1,310     

C
v
: 10

Fig. 5. Computation of costs to invoke mad (see Figure 2 (b)) in the CPU.

2 in a CPU-GPU architecture), in typical scenarios Algorithm 1 runs in linear time on the original
program’s size.

Example 3.10. Figure 5 shows how Algorithm 1 finds the cost of invoking functionmad, (Figure 2
(b)), in the CPU. The algorithm starts from the leaves of the ECG. Nodes add_cpu, add_gpu,mul_cpu
and mul_gpu represent routines that do not call other functions. Their invocation costs are queried
directly throughCv . To compute the cost of nodemad_cpu, we must consider four cases: (i) call add
and mul in the CPU; (ii) call add in the CPU and mul in the GPU; (iii) call add in the GPU and mul
in the CPU; or (iv) call add andmul in the GPU. Because the cost of calling add does not depend on
the cost of callingmul, we only need to make two decisions: calling add on CPU or GPU, and calling
mul on CPU or GPU. Algorithm 1 assumes that the cost of transferring data ś the matrices in this
example ś is always constant, e.g., 200 units. Thus, we find it best for mad_cpu to invoke add on
the CPU andmul on the GPU. This scheduling costs: 10a + 1,000b + 100c + 0d + 200e = 1,310, given
by the following costs: (a) run mad_cpu; (b) run mul_gpu; (c) run add_cpu; (d) transfer data from
mad_cpu to add_cpu; and (e) transfer data from mad_cpu to mul_gpu. Therefore, when calling
mad at the CPU, Algorithm 1 schedules add also in the CPU, but calls mul in the GPU.

Example 3.11. Figure 6 shows the result of our algorithm when applied to the program seen in
Figure 1. Our final scheduling invokesmul always on the GPU, and add on the CPU, if this function
is called from main. However, if this function is called from mad, then it is invoked on the GPU.

Examples 3.10 and 3.11 used illustrative values for the parameters of the cost models. Instead of
manually trying to determine effective values for a given architecture, we resort to heuristics to
automatically find parameters that maximizes the effectiveness of Algorithm 1 on the hardware at
hand. Section 4 describes our approach.

4 AUTOMATIC CALIBRATION OF A COST MODEL

Algorithm 1 is parameterized by a cost model. There are several ways to build a cost model for a
given processor. For instance, Sim et al. have provided an analytical cost model for a GPU, which
can be adapted to different kinds of graphics processing units [Sim et al. 2012]. In our case, the cost
model does not have to reflect precisely the execution time of a function, in a processor, given a
certain workload. Although cost models reflect running time, there is no requirement that these
costs correlate (in the statistical sense) with the actual running time of programs. Rather, we need
cost models that provide Algorithm 1 clues about the relative speed between different processors
when executing the same function. Thus, the actual unit or magnitude of the costs does not matter.
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main_cpu

mad_cpu mad_gpu

add_cpu mul_gpu mul_cpu add_gpu

A: 100 B: 1,000 C: 100,000 D: 10

E: 1,310 F: 1,020

G: 1,320 Local Cost

mad
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mul

CPU

10

100

100,000

GPU

10

10

1,000

200

Final schedule (S):

Transfer Cost E:

A: CPU
B: GPU
C: CPU

A
B

C D
E

F

D: GPU
E: GPU
F: GPU

Fig. 6. Application of our static scheduler on the Extended Call Graph seen in Figure 2 (b). Solid edges
represent actual invocation paths, as computed by the scheduler. The two hatched lines cannot be reached
from the ECG’s root note. Tags (A-F) show the calling cost of each invocation.

Computation Costs. Different processors use different cost models. Example 4.1 describes a
very simple cost model for typical GPUs. We do not consider this model a contribution of this
paper, since there exists a vast body of literature on the precise simulation of different computer
architectures [Zeng et al. 2009]. It is only a pragmatic way of enabling static scheduling. Nevertheless,
Example 4.1 describes the essential features of a cost model for a processor: a processor’s cost
model is an algorithm, parameterized by a number of constants, which, once given a function f ,
determines a value for f . The value depends on structural characteristics of f , and on the model’s
constants. Section 4.1 addresses the problem of determining good constants.

Example 4.1. Algorithm 2 provides a costmodel for a GPU. It considers different factorsmentioned
by Sim et al. [Sim et al. 2012], including: (i) the parallelism factor; (ii) the cost of divergences; and (iii)
the cost of launching a kernel. Additionally, we consider also the nesting depth of each instruction
inside loops: if an instruction is contained in k nested loops, the model considers it executes
(loop_iterations)k times. Instructions within divergent branches are assumed to have a cost of
gpu_branch_cost; other instructions have a cost of 1. Algorithm 2 analyzes code written in plain
C. If an instruction is within a parallel loop, its cost is divided by parallelism_factor, a constant
representing the number of threads available in the target processor. However, Algorithm 2 does
not allow the cost of an instruction to fall below 1 ś the parallel execution of an instruction cannot
be faster than a single execution on one processor. A top-level parallelizable loop, or one nested
in another loop that is not parallelizable, will be turned into a GPU kernel. Hence, it incurs an
initialization cost given by kernel_launch_cost.

A heterogeneous architecture might feature several kinds of processors. Each of them might use
a potentially different formula to feed Algorithm 1 with a cost model. To illustrate these differences,
Example 4.2 presents a cost model for typical multi-core CPUs. We suggest the reader to contrast
this model with the one that Example 4.1 had described for a GPU.

Example 4.2. Algorithm 3 is an example of a cost model for a CPU. The more deeply nested
within a loop is the instruction, the higher its cost. This simple model considers that every loop
executes a fixed number of iterations. It also assumes both branches of conditional statements are
always executed. Thus, the depth of the innermost loop that contains an instruction is enough to
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Data: Function f

Result: Cost

c = 0

for instr in f do
depth = loopDepth(instruction)
instruction_cost = (loop_iterations)depth

if isWithinDivergentBranch(instr ) then
instruction_cost = instruction_cost × gpu_branch_cost

end

if isContainedInParallelizableLoop(instr ) then
instruction_cost = instruction_cost / parallelism_factor

end

instruction_cost = max(1, instruction_cost )
c = c + instruction_cost

end

for loop in get_loops(f ) do
if isParallelizable(loop ) and not

isContainedInParallelizableLoop(loop ) then
# A kernel will be created containing this loop

c = c + kernel_launch_cost

end

end

return c

Algorithm 2: Cost model of a GPU. Parameters, e.g., factors that vary with the architecture,
are underlined.

Data: Function f

Result: Cost

c = 0

for instr in f do
depth = loopDepth(instr )
c = c + (loop_iterations)depth

end

return c

Algorithm 3: An example of cost model for a CPU. The only parameter is underlined.

estimate the number of times the instruction shall execute: if such depth is d , the instruction is
assumed to execute (loop_iterations )d times.

Algorithm 3 computes costs per assembly instructions. The cost of a function is a weighted sum
of the costs of each of its instructions. Different kinds of instructions take a different number of
cycles and resources to execute. In this paper we did not try to account for these differences when
testing cost models. There exists a vast body of literature on the precise simulation of different
computer architectures [Zeng et al. 2009]. It is possible to use this knowledge, already in place, to
improve the precision of a cost model; however, this problem is not the focus of this paper, and we
shall not try to solve it.

Transfer Costs. In addition to the cost of running code in processors, Algorithm 1 also takes into
consideration the cost of moving data between processors. This cost varies with the architecture.
For instance, it is more costly to move data from a CPU to a remote server running on the cloud,
than to move data from a CPU to an accelerator on the same chip. The cost of transferring data
naturally varies with the size of the data; however, in this paper we do not consider this variation.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 50. Publication date: October 2017.



Static Placement of Computation on Heterogeneous Devices 50:13

The rationale behind this decision is that for small data sizes, transfer costs are negligible. Section 5
shall provide empirical evidence to corroborate this observation. Example 4.3 describes a simple
cost model for inter-process communication. Like in Example 4.1, to determine the constants of
this cost model, we resort to the probabilistic search method given in Section 4.1.

Example 4.3. When transfering data to a remote processor, the transfer cost tends to be dominated
by arrays. When a function call is performed on the same processor, however, no transfer cost
is incurred. Based on such premisses, Algorithm 4 estimates the cost of transferring data among
different processors of a heterogeneous architecture.

Data: Origin processor S, target processor D, list of data to be moved A

Result: Cost

if S == D then
return 0

end

c = 0

for arдument in A do

if isArray(A) then
c = c + array_transfer_cost

end

end

return c

Algorithm 4: Example of model to estimate the cost of transferring data, given a call д(A) in
function f , where f runs in processor S , and д runs in processor D.

4.1 Optimizing Cost Models with Simulated Annealing

Static cost models, such as the ones presented in this section, contain parameters that allow
Algorithm 1 to account for hardware characteristics, such as the latency and throughput of the
communication channel between different processors. In order to have a usable cost model, i.e.
one that assigns costs to computations, those architecture-specific parameters must be assigned
concrete values. This is not a simple task, however, given that parameters might interact with
each other in complex ways. We call the challenge of finding good values for the parameters
of a cost model given an architecture the Calibration Problem. Definition 4.4 states this problem
more formally. This definition uses a vague notion of efficiency on purpose: a cost model might
be customized to minimize energy consumption, runtime, memory transfer time, etc - or even a
combination of these objectives.

Definition 4.4 (Calibration Problem). Given a cost model, parameterized by arguments A =
{a1, . . . ,am }, 0 ≤ ai , a training set of benchmarks B = {b1, . . . ,bn }, and a set of processors
C = {p1, . . . ,pk }, find an assignmentV : A 7→ R that maximizes a user-defined efficiency function
of the benchmarks in B, running on the processors of C, according to the scheduling produced by
Algorithm 1.

Solutions of the Calibration Problem range on an infinite space of unknown structure; hence,
we cannot design an algorithm to solve it exactly. Thus, to deal with this problem we resort to a
heuristic: Simulated Annealing (SA) [Cerny 1985]. Simulated annealing is a probabilistic technique
for approximating the global optimum of a function. SA iterates through different configurations
of the system that must be optimized. In our case, a configuration is an assignment of values
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to parameters A of the cost model. An iteration consists of slightly modifying the value of the
parameters and then computing the objective function again. This value is compared to the current
solution, and with a certain probability the new configuration is adopted. After a fixed number of
iterations, SA is likely to find a local optimum in the search space.
Simulated Annealing requires an objective function. In our case, it consists of a measure for

evaluating the quality of a configuration A (i.e. it must be some function f : A 7→ R). We use
the training set of benchmarks to evaluate this quality. The programs in the training set need to
be deterministic, i.e. perform the same amount of computation given same inputs. Basically, we
run each program in its original form on a baseline processor (e.g. the CPU), and calculate the
speedup or slowdown gained by the scheduling suggested by Algorithm 1 when given a cost model
parameterized by A. If b1, · · · ,bn are the benchmarks in the training set, we denote the average
cost to run bi on the baseline processor by O (bi ). E (bi ,A) is the cost to run bi with the scheduling
assigned to it by Algorithm 1, given a cost model parameterized by A. From these notions, we
define the quality of a set of cost model parameters A as follows.

Definition 4.5 (Quality of the Cost Model). The quality of a cost model, Q (A), is defined below.
We use the notation [p] = 1 if the predicate p is true; otherwise [p] = 0:

Q (A) =
1

n

n
∑

i=1

*
,
[O (bi ) < E (B,A)]

(

E (bi ,A)

O (bi )

)

− [O (bi ) > E (bi ,A)]

(

O (bi )

E (bi ,A)

)

+
-

To calculate the quality of a set of parameters, Definition 4.5 adds up speedups and subtracts
slowdowns, dividing the result by the number of benchmarks n. We want to findA that maximizes
Q (A). The division by n does not change the optimization process, but it helps us interpret Q (A):
it measures the average effect of applying Algorithm 1 when its cost model is parametrized byA. If
Q (A) is positive, we are more likely to obtain a speedup than a slowdown once we feed Algorithm 1
with these arguments. If Q (A) is zero, we should not expect any change. If it is negative, we are
more likely to observe a slowdown.
As Example 4.6 shows, our solution to the Calibration problem consists of an instantiation of

Simulated Annealing with our problem-specific features. Q (A) is the objetive function we want to
maximize. We use the most common choices of temperature function (linear decay) and transition
probability. The algorithm starts with random values for parameters given by A. In each iteration,
it changes each value in A by a random amount, obtaining a new candidate solution A ′, and
calculates the quality Q (A ′). If Q (A ′) > Q (A), then the new solution is always taken. Otherwise,
it is taken with a probability that depends on Q (A) −Q (A ′).

Example 4.6. Figure 7 shows a few iterations of our calibration algorithm using only the
structure in Figure 2 (b) as our training set. For simplicity, we consider just two parameters
of the cost model: a1 = parallelism_factor (number of available threads ś see Example 4.1) and
a2 = array_transfer_cost (see Example 4.3). We assume an architecture with two processors, a CPU
(C), and a GPU (G). Calibration starts with random values for all the parameters used in the cost
model. In this case, it starts with a1 = 100 threads and a2 = 25 GB/sec. Depending on the values
of a1 and a2, Algorithm 1 assigns contexts to different processors. For the only program in this
example’s training set, we have four calling contexts: () → main, main→ add, main→ mad, and
mad→ add. For each one we have a choice of where to run the callee; hence, we describe regions
by a four-elements vector.
During Simulated Annealing, the calibration algorithm tries other choices of values for the

parameters by adding or subtracting random deltas to current values. New values are used to
compile the programs in the training set. Speedups (the quality of the evaluated cost model) are
then calculated. For instance, in the second iteration, the algorithm evaluated the cost model defined
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Fig. 7. Example of search using simulated annealing and two parameters. Regions are only illustrative: they
do not necessarily describe the actual search space.

by a1 = 200 threads and a2 = 50 GB/sec. The resulting speedup is used to decide whether the
algorithm keeps or discards current values. After a pre-defined number of iterations, set by the
user before execution begins, we are likely to find a better cost model than the one given by the
random initial values.
This example shows eight iterations of Simulated Annealing. After the eighth, we have found

an assignment of values to arguments (a1 = 500 threads, a2 = 100 GB/sec) that gives us the best
speedup among all the eight runs of the training set. Hence, this assignment is likely to help our
code placement algorithm to benefit more from the target architecture. In this configuration, we run
main on the CPU, and perform the call main→ add on the CPU as well. The two other contexts
are mapped to the GPU. This cost model is then ready to be used, without further calibration, in
programs not yet seen.

4.2 Implementation Details

Thus far, we have discussed cost models and simulated annealing in a rather abstract way. To
provide concrete support for such notions, we have materialized them into a tool, Etino, which,
as Figure 4 clarifies, is used in combination with other compilation equipment. In the rest of this
section, we discuss some details of Etino’s implementation which we believe are important for
readers interested in reproducing our results.

Implementing Cost Models. We use analyses already in place in LLVM to compute the cost of
each function in a program, according to Algorithms 2, 3 and 4. To find divergence branches,
LLVM provide us with Sampaio et al.’s divergence analysis [Sampaio et al. 2014]. LLVM’s typed
intermediate representation lets us compute the transfer cost of function arguments and return
values. We use structural analyses to obtain the nesting depth of each instruction. Finally, we build a
program’s ECG by traversing its call graph. Algorithm 3 computes costs per assembly instructions.
The cost of a function is a weighted sum of the costs of each of its instructions. Different kinds of
instructions take a different number of cycles and resources to execute. In this paper we did not try
to account for these differences when testing cost models.

Insertion of data-copy primitives. OpenACC provides different pragmas to move data between the
CPU and the GPU. Examples of these primitives can be seen in Figure 3. The automatic insertion of
copy directives requires symbolic knowledge of the size of arrays. For instance, in Figure 3 Etino
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infers that array dst has N positions. To perform this inference, Etino uses the infra-structure
already present in dawncc [Mendonça et al. 2017], a tool that inserts OpenACC and OpenMP 4.0
annotations in programs automatically. Our implementation is able to infer correct bounds to every
array in the benchmarks that we use in Section 5. It infers ranges for about 45% of the arrays in
SPEC CPU 2006. The limitation, in this case, is aliasing: dawncc uses LLVM’s points-to analysis to
disambiguate pointers. Whenever points-to analysis returns multiple aliases to an array, dawncc
gives up finding precise bounds to it. Consequently, Etino cannot insert annotations in this case.

Discovery of Parallel Regions. Etino marks every loop that contains only accesses to bounded
arrays with the OpenACC directive kernels. An array is łboundedž if we can infer its limits using
dawncc’s region analysis. This region analysis is implemented after the techniques first introduced
by Rugina and Rinardi [Rugina and Rinard 2005]. We use pgcc’s dependence analysis to detect if
a loop marked with the kernels pragma is parallel. To increase the number of parallel loops, we
resort to restrictification [Alves et al. 2015; Sperle Campos et al. 2016]: a technique to disambiguate
pointers at runtime. The symbolic range analysis of Rugina et al. already gives us the necessary
equipment to insert disambiguation checks. Furthermore, OpenACC includes conditional pragmas,
which let us apply parallelization only in the absence of dependences created by aliasing.

Example 4.7. The temporary RST_AI1, in functions GPU_mul and GPU_add (Figure 3), is true
whenever there is no overlapping between arrays accessed inside the parallel region.

Code Cloning. Whenever Etino is able to bound all the arrays within a loop that is part of a given
function f , it produces a clone GPU_f of this function. This clone will augment the extended call
graph of the target program; hence, allowing Algorithm 1 to schedule f on the graphics processing
unit. The only difference between a function and its clone is due to the OpenACC directives that
Etino creates to indicate where said clone will run.

Running Simulated Annealing. Etino runs 100 iterations of Simulated Annealing. This method
is parameterized by a temperature function. The temperature function that Etino uses is a linear
decay, starting at 10 and linearly approaching 0. To generate neighbour states, we independently
make each of the parameters in A larger or smaller by a random factor of up to 50%, with uniform
probability. All parameters are initialized with small random values. Each iteration of Simulated
Annealing involves measuring the running time of several programs both in its sequential and
parallel versions. Etino averages the running time of 5 runs. In spite of the parameter space being
continuous, Etino’s decisions are discrete: they ultimately lead to a solution of Algorithm 1. Thus,
in many iterations, equal programs will be generated by Etino for the same benchmarks. To speed
up the iteration process, Etino uses a cache to find when it has generated programs that were
already evaluated in previous iterations.

5 EVALUATION

The goal of this section is to demonstrate that our algorithm effectively generates efficient code for
heterogeneous architectures. To achieve this end, we shall provide answers to these questions:
• RQ1: Given an actual architecture, can our tuning algorithm find effective cost models that
generalize well (i.e. are effective for programs not seen in the tuning process)?
• RQ2: Can Etino optimize programs effectively without programmer intervention?
• RQ3: Can Etino be used as a guiding tool, helping developers to decide where to run each
program part?
• RQ4: How much does Etino’s simplification of ignoring input size (it is fully static) affect its
performance?
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• RQ5: Is Etino’s interprocedural analysis useful in helping programmers to use heterogeneous
hardware?

Methodology. To answer these questions, we use programs taken from four benchmarks: Poly-
Bench, C version7, MgBench8, the Computer Language Benchmarks Game9 (BenchGame), and
the DataMining Benchmark Suite [Da Mata et al. 2013]. PolyBench contains various C programs
that perform linear-algebra, statistics and stencil computations. MgBench is the set of benchmarks
distributed along with ipmacc [Lashgar et al. 2014], an OpenACC compliant compiler, and dawncc
[Mendonça et al. 2017], the source-to-source tool that we use to insert OpenACC annotations.
MgBench mixes linear-algebra and data mining algorithms. As we show in this section, compiling
these programs to a GPU without an algorithm such as ours is not always profitable. BenchGame
contains more traditional C programs. We use this suite to demonstrate that our technique is appli-
cable even outside the domain of data-parallel applications. DataMining contains more complex and
irregular applications, which exercise the interprocedural aspects of Algorithm 1. In total, these four
benchmarks give us 33 programs: 16 from PolyBench, 6 from MgBench, 8 from BenchGame and 3
from DataMining. The 30 programs in PolyBench, MgBench and BenchGame can be processed fully
automatically by dawncc to implement the scheduling computed by Etino. These benchmarks are
used in Sections 5.1 and 5.2. The same is not true for the more complex programs in DataMining.
Nevertheless, Etino can still suggest a scheduling for them, which is profitable if implemented
by the programmer, as we show in Section 5.5. To run the benchmarks, we have used the three
following setups:

Setup 1: CPU: Intel Xeon 2GHz; GPU: Nvidia GTX 670;
Setup 2: CPU: Intel i7 3.4GHz; GPU: Nvidia Tesla C2070.
Setup 3: Chipset: ARM Exynos 7420 Octa, CPUs: 4x2.1 GHz Cortex-A57 + 4x1.5 GHz Cortex-
A53, GPU:Mali-T760MP8.

Etino requires an external compiler to translate OpenACC/OpenMP 4.0 directives into binary code.
The compiler used in the first two setups was the PGI C Compiler version 16.1 64-bits (pgcc). In
Setup 3, we used a modified version of LLVM/Clang that has an OpenMP backend and runtime for
the Exynos architecture. Finally, in Section 5.3 we change Setup 1, to use ppcg [Verdoolaege et al.
2013], instead of pgcc. Ppcg is a source-to-source compiler that translates C code into C for CUDA.
In this process, ppcg applies several optimizations in the program, such as tiling, loop fusion and
loop unrolling. Our intention, by using ppcg, is to show that mappings produced by Etino can be
used to guide developers in the task of choosing where each program part should run.

This Section in a Nutshell. Table 1 shows statistics about all benchmarks used: original number
of functions and number of lines in their source code. We also show how many functions are
assigned to each processor by Etino after it learns from training data on each of the three available
architectures. Usually, Etino assigns only a small group of routines to the GPU, and most of the
routines run only either on the CPU or on the GPU. However, in the larger benchmarks, such
as Itemsets, a function is invoked both on the CPU from some contexts and on the GPU from
others. Table 1 shows that Etino’s scheduling can differ, depending on the architecture. This is
a consequence of the calibration methodology discussed in Section 4.1. This methodology lets
Etino achieve performance portability across architectures, since it uses training data from each
hardware to choose its scheduling. As we explain in the rest of this section, this flexibility is an
important factor to avoid the slowdowns that come out of reckless parallelization. The table also

7http://web.cs.ucla.edu/~pouchet/software/polybench
8https://github.com/lashgar/ipmacc
9http://benchmarksgame.alioth.debian.org
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Table 1. Statistics about benchmarks, sorted by number of functions, and the placement that Etino produces,
after the training phase on each setup. Setups 1, 2 and 3 are denoted by St. 1, St. 2 and St. 3, respectively. LoC:
number of uncommented lines of code. Functions: number of functions in the original program.X/Y/Z mean
that X functions are placed on the CPU, Y on the GPU, with Z being in both depending on the calling context.
The * symbol marks benchmarks that were transformed by Etino; the others were not deemed profitable to
accelerate. Indeed, we have observed several slowdowns when mapping those programs onto different GPUs.
The right side of the table shows compilation times measured on Setup 1. Etino’s implementation works
in three phases. Column Time LLVM shows the time taken by Algorithm 1. Column Time Clang shows
the time taken to change the original C++ code ś for instance, by cloning functions. Column Time dawncc

shows the time that dawncc takes to analyze and annotate programs. We had to annotate the DataMining
benchmarks manually; hence, we do not show dawncc’s time for them.

Benchmark LoC Functions St. 1 St. 2 St. 3
Time

LLVM

Time

Clang

Time

dawncc

* DM/itemsets 193 12 10/3/1 10/3/1 10/3/1 0.55s 0.75s N/A

* MG/other-nearest 262 9 7/2/0 7/2/0 7/2/0 0.09s 0.84s 1.58s

MG/vector-prod 160 8 8/0/0 8/0/0 8/0/0 0.10s 0.85s 1.83s

MG/mat-sum 171 8 8/0/0 8/0/0 8/0/0 0.10s 0.86s 2.23s

* MG/mat-mul 190 8 6/2/0 6/2/0 6/2/0 0.10s 0.87s 2.46s

* MG/lu 209 8 6/2/0 6/2/0 6/2/0 0.11s 0.89s 6.51s

* MG/k-nearest 261 8 6/2/0 6/2/0 6/2/0 0.10s 0.92s 1.12s

* MG/floyd 273 8 8/0/0 6/2/0 8/0/0 0.11s 0.96s 0.90s

* MG/cholesky 212 8 6/2/0 6/2/0 6/2/0 0.10s 0.89s 3.10s

* DM/kmeans 439 8 6/6/4 6/6/4 6/6/4 0.98s 1.74s N/A

BG/Puzzle 87 7 7/0/0 7/0/0 7/0/0 0.08s 0.41s 1.44s

* MG/collinear-list 230 6 4/2/0 4/2/0 4/2/0 0.10s 0.97s 2.92s

* DM/knn 308 6 3/3/0 3/3/0 3/3/0 1.00s 1.66s N/A

MG/str-matching 198 5 5/0/0 5/0/0 5/0/0 0.09s 0.94s 1.98s

MG/search-vector 150 5 5/0/0 5/0/0 5/0/0 0.08s 0.88s 1.58s

BG/SpectralNorm 64 5 5/0/0 5/0/0 5/0/0 0.09s 0.71s 1.70s

BG/Fasta 134 5 5/0/0 5/0/0 5/0/0 0.09s 0.49s 1.11s

* PB/2MM 237 4 3/1/0 3/1/0 3/1/0 0.10s 0.88s 2.81s

BG/NBody 143 4 4/0/0 4/0/0 4/0/0 0.09s 0.76s 3.51s

* PB/SYRK_M 168 3 3/0/0 1/2/0 2/1/0 0.09s 0.84s 1.72s

* PB/SYRK 186 3 3/0/0 1/2/0 2/1/0 0.09s 0.84s 2.10s

* PB/SYR2K 198 3 3/0/0 1/2/0 2/1/0 0.10s 0.85s 2.27s

PB/MVT 198 3 3/0/0 3/0/0 3/0/0 0.12s 0.84s 2.08s

PB/GRAMSCHM 214 3 3/0/0 3/0/0 3/0/0 0.12s 0.95s 2.79s

PB/GESUMMV 186 3 3/0/0 3/0/0 3/0/0 0.11s 0.63s 1.82s

* PB/GEMM 200 3 2/1/0 2/1/0 2/1/0 0.09s 0.63s 1.95s

* PB/FDTD-2D 240 3 3/0/0 2/1/0 2/1/0 0.13s 0.88s 3.38s

* PB/COVAR 221 3 3/0/0 2/1/0 2/1/0 0.10s 0.86s 2.77s

* PB/CORR 286 3 3/0/0 2/1/0 2/1/0 0.11s 0.82s 3.92s

PB/BICG 214 3 3/0/0 3/0/0 3/0/0 0.12s 0.75s 2.01s

PB/ATAX 176 3 3/0/0 3/0/0 3/0/0 0.09s 0.83s 1.86s

* PB/3MM 270 3 2/1/0 2/1/0 2/1/0 0.12s 0.90s 3.36s

* PB/3DCONV 205 3 1/2/0 1/2/0 1/2/0 0.11s 0.66s 3.94s

* PB/2DCONV 183 3 3/0/0 2/1/0 2/1/0 0.10s 0.64s 2.34s

BG/PartialSums 66 3 3/0/0 3/0/0 3/0/0 0.10s 0.59s 1.31s

BG/FannKuch 111 2 2/0/0 2/0/0 2/0/0 0.10s 0.45s 1.09s

BG/Recursive 55 1 1/0/0 1/0/0 1/0/0 0.10s 0.29s 0.76s

BG/NsieveBits 37 1 1/0/0 1/0/0 1/0/0 0.09s 0.43s 0.99s
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Fig. 8. Evolution of the quality of the cost model (Definition 4.5) during Simulated Annealing on Setup 1, for
two folds.

shows the time taken to analyze and modify the benchmarks. The time taken by Algorithm 1
(column Time LLVM) is the same, regardless of the experimental setup. For the other two columns
(Time Clang and Time dawncc) we report the time measured for Setup 1.

5.1 RQ1: The Effectiveness of Automatic Calibration

To answer the first research question, we evaluate Etino’s capability of automatically tuning a
cost model for a given architecture. We want the resulting cost model to be effective for programs
not seen in the training phase. We divided the 30 evaluated programs in three arbitrary groups,
mimicking the k-fold cross validation method [Kohavi 1995]. We optimize programs in each group
(fold) while using the other two groups as the training set during Simulated Annealing. In this
experiment we leave the DataMining benchmarks out, because dawncc, the annotator we use, does
not handle those programs without user intervention.

Figure 8 shows the evolution of the Quality (as defined in Section 4.1) of the cost model for two of
the three folds on Setup 1. Very similar figures are obtained (with different scales) in other folds, and
also on Setups 2 and 3, which we omit to avoid redundancy. In each iteration, we run Algorithm 1
using the current cost model parameters on all benchmarks. Then, Simulated Annealing uses the
quality obtained in the training set to decide whether to keep or discard the current values for
the parameters. Thus, while we show the Quality in the test set in the figure, the algorithm is not
aware of it. Rather, we use it to check that the algorithm is finding a general cost model: we want
that Quality increases in the test set even though the algorithm is only optimizing the parameters
based on the training set.

As we can observe, quality increases considerably in the training and test sets as the number of
Simulated Annealing iterations mounts up, showing that the model learned from the training set
also generalizes for the test set. In both figures, we observe a sharp increase on the perceived quality
of the model, after approximately 70 iterations of simulated annealing. This behavior happens
because simulated annealing ranges on a discrete space: changes in one parameter might lead to
very different performance results. Etino starts with a conservative cost model, using only the
CPU, and tries many combinations of parameters before finding values that start using the GPU
profitably. In all 3 folds, it eventually converges on parameters that manage to optimize programs
in the training and test sets. Therefore, given an architecture, Etino can adapt its cost model using a
representative set of programs for training, in such a way that its general performance (even when
applied to programs outside the training set) is also enhanced. Such evidence suggests a positive
answer to our first research question.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 50. Publication date: October 2017.
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We notice that cost model parameters do not necessarily map exactly to hardware specifications.
There might exist more than one set of parameters leading to similar results in the same architecture.
In Setup 1, Simulated Annealing produced different absolute numbers for each of the three folds.
However, these numbers, albeit individually different, caused the code placement algorithm to
perform similar decisions. We have observed another interesting fact in this experiment. Whether
we started with random values or with educated guesses based on hardware parameters did not
change the quality of the cost model. We observed that educated guesses help simulated annealing
to converge faster. However, with enough iterations the quality of the cost model was the same.

5.2 RQ2: Fully Automatic Runtime Gains

This section evaluates Etino’s capability of taking advantage of heterogeneity by comparing it
to other two scheduling strategies: dawncc, which sends all parallel computations to the GPU;
and noop, which runs programs entirely on the CPU. Figure 9 (Left) shows speedups obtained by
both Etino and dawncc on every available benchmark that dawncc handles automatically10. These
results were obtained on Setup 1; Figure 9 (Right) shows the same comparison on Setup 2, and
Figure 10 on Setup 3. Speedups are relative to noop. We omit programs in which no computation
on the GPU is performed neither by Etino nor by dawncc. To optimize each program, Etino uses the
cost model obtained in the end of the training phase (see Section 5.1) reached when that program
was not in the training set. A speedup of 0 indicates no change relative to sequential execution,
whereas a slowdown of X times is shown as −X .

On Setups 1 and 2, our static scheduler obtains all of the larger speedups produced by dawncc
(≥ 32x in 3MM, ≥ 23x in 2MM, and ≥ 11x in GEMM and mat-mul on Setup 1). However, dawncc
has serious drawbacks, especially in the more common C programs from BenchGame, in which
reckless parallelization can bring slowdowns of up to 720x . Such slowdown was observed in
FannKuch on Setup 2. In several benchmarks, the speed gained by offloading does not pay off for
the cost of transfering data. Large slowdowns are caused by the amplification of this effect when
inappropriately offloaded functions are called in a loop. Etino is able to avoid all these cases but
three, only allowing one slowdown in PolyBench (3DCONV becomes 2.53 slower), and two in
MgBench (collinear-list, 1.18 times slower, and chollesky, 2.58). On the other hand, dawncc shows
slowdowns in 16 programs on Setup 1 and 15 on Setup 2, several of them being more than 100
times slower.
If setups 1 and 2 give similar results, setup 3 provides us with a very different landscape. For

instance, 2DCONV from PolyBench was not modified by Etino on Setup 1, and it was slowed down
by dawncc there. However, on Setup 3, Etino schedules a core convolution computation on the GPU,
obtaining a speedup of 43%, as did dawncc. On this Setup, Etino obtains 8 speedups - against 9 of
dawncc. On the other hand, it only slows two programs down, both from MgBench (str-matching
by 48%, and vector-product by 44%), while dawncc slows down 10 programs. This evidence allows
us to answer our second research question positively.
To put the speedups seen in Figure 9 in perspective, we have re-written 2MM using BLAS

routines, in the same way as we have done to the program in Figure 1 (Section 2). We chose 2MM
because, in our opinion, it was the easiest benchmark to adapt to use BLAS. As in Section 2, we
test the programs with square matrices having 3,000 rows, using the 12-core machine available
in Setup 1. The sequential program, compiled with pgcc -fast, runs in 624.60 seconds (in one
CPU core). The program optimized with Etino runs in 3.30 seconds (in the Nvidia GPU). Using
BLAS ś the ATLAS version ś we reach 3.50 seconds (in the 12 Intel cores), and using cuBLAS,

10We shall omit standard error bars from these figures, because they tend to disappear in the log-scale. The largest variation

we have observed in any five runs among any of our 33 benchmark was under 0.6%.
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Fig. 9. (Left) Speedups obtained by (i) Etino and (ii) dawncc against original, i.e., sequential code, on Setup 1.
(Right) Speedups obtained by (i) Etino and (ii) dawncc against original, i.e., sequential code, on Setup 2.

Table 2. Using Etino as a guiding tool. The annotations suggested by Etino when used with dawncc have
been ported to ppcg. łUnguided" is the code produced by ppcg when every parallel loop is marked as a GPU
kernel. łGuided" is the code produced with only the annotations that Etino has deemed profitable.

Benchmark Unguided Guided Speedup Benchmark Unguided Guided Speedup

PB/2DCONV 0.823s 0.053s 15.5x PB/2MM 2.344s 2.564s 0.9x

PB/3MM 2.997s 3.294s 0.9x PB/ATAX 0.793s 0.034s 23.3x

PB/BICG 0.8s 0.032s 25x PB/CORR 0.827s 0.831s 1x

PB/COVAR 0.824s 0.841s 1x PB/GEMM 1.628s 1.858s 0.9x

PB/GESUMMV 0.793s 0.028s 28.3x PG/GRAMSCHM 1.486s 17.731s 0.1x

PB/MVT 0.901s 0.457s 2x PB/SYR2K 8.701s 8.825s 1x

PB/SYRK 0.955s 0.984s 1x PB/SYRK_M 0.85s 0.867s 1x

we get 1.60 seconds (using the Nvidia GPU). Given cuBLAS’s reputation, we believe that this last
number is very close to the best result we could obtain in Setup 1. Thus, Etino has been able to
reduce by almost 190x the runtime of 2MM, being close to staying within 2x the performance of
the hand-optimized program, without any user intervention.

5.3 RQ3: Guiding Tool

In Section 5.2, Etino has been used in a fully automatic way: no intervention from users was
necessary to produce our results. Nevertheless, Etino can also be used as a guiding tool, which
supports programmers in deciding where to run each part of his or her code. To demonstrate this
possibility, we have used Etino in tandem with the ppcg compiler [Verdoolaege et al. 2013]. In
principle, it is possible to combine Etino with ppcg to produce code automatically, as we have
done with dawncc. However, this would require some familiarity with the internals of ppcg, which
must be adapted to read feedback from Etino. Thus, in this experiment we adopt the following
methodology: we use the Etino-dawncc-pgcc11 combination to annotate code automatically, and
then port these annotations to ppcg manually.
Figure 2 shows the results of this experiment. We are using the łSetup 1" architecture, and we

restrict ourselves to the PolyBench programs. Compiling the other benchmarks with ppcg would

11We ask the reader to be specially careful to avoid confusing pgcc, the PGI compiler, with ppcg, the polyhedral compiler of

Verdoolaege et al.
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require the generation of code to invoke functions within kernels, something that this compiler
seems not to do at this point. In Figure 2 we are comparing the runtime of two variations of
PolyBench: one marks as kernels every loop that is embarrassingly parallel. This includes all the
initialization loops, for instance. The other marks as kernels only those loops that Etino has deemed
adequate for the GPU. In four benchmarks, 2DCONV, BICG, GESUMMV and ATAX, Etino’s decision
was to not use the GPU at all. In fact, as we observed, we get substantial slowdowns if we run these
programs on the GPU.

We got a few slowdowns by using Etino: the biggest happened in GRAMSCHM ś an implemen-
tation of the Gram-Schmidt orthonormalising method. In this case, Etino has incorrectly hindered
annotations. This imprecision is due to the fact that Etino has been tuned with pgcc, the PGI com-
piler. Performing this tuning with ppcg is not possible, because annotations are inserted manually.
The tuning of a cost model, as explained in Section 4, requires hundreds of iterations of simulated
annealing. Each iteration involves the generation of code and its execution. In the particular case
of GRAMSCHM, compiling it with pgcc does not yield good GPU code, contrary to what we have
observed with ppcg. Similarly, for 3MM, 2MM and GEMM, Etino made assumptions on the quality
of the GPU code generated based on the training done with pgcc, and decided to not run some
small functions on the GPU. The equivalent GPU code generated for these functions by ppcg,
however, runs faster, leading to the small slowdowns observed for these benchmarks. Had we
tuned Etino directly with ppcg, then these problems would not have occurred. Thus, in the effort
to answer the third research question, we drew two conclusions. First, the construction of a cost
model depends also on the compiler, not only on the architecture. Second, even when used in
cross-compilation mode, Etino is effective as a guiding tool: we got four large speedups, against
one significant slowdown.

5.4 RQ4: Sensitivity to Input Size

In this section, we evaluate how variations in input size affect Etino. This is relevant because
to be fully static, Etino disregards input size. We have tested several different input sizes for
each benchmark on Setup 1. Table 3 shows speedups and slowdowns produced by Etino on all
benchmarks in which it uses the GPU, and for dawncc it shows the largest slowdown obtained in
each benchmark suite. As before, positive numbers denote speedups, whereas negative numbers
denote slowdowns (i.e. -2x means łtwo times slowerž). Previously, we had used the default input
size from each benchmark; Table 3 shows results for 4 input sizes: small, medium, large and huge.
The smallest input makes the sequential program run in about 100ms; huge input is the largest
we were able to run on Setup 1, given the available memory, or the smallest size that makes the
benchmark run in more than 5 minutes (in FannKuch). In this experiment, Etino’s schedulings
produced slowdowns for smallest inputs, where the absolute impact is the smallest. However, when
input size grows, the speedup tends to grow as well. In the two benchmarks in which Etino always
got slowdowns, this ratio tends to shrink, and for huge inputs it is less than 1% in collinear-list

and about 18% in 3DCONV. On the other hand, dawncc produces several slowdowns that behave
quite differently. In FannKuch, for instance, slowdown grows with input size. In search-vec, in
which data transfer is the major overhead when running on the GPU, slowdown keeps at about
102x. In MVT, slowdown also shrinks with input size, but it is still 318% on the huge input. Therefore,
Etino’s schedulings showed a much more desirable behavior with varying input size: slowdowns
happen when the absolute impact is minimal. Thus, answering our fourth research question: small
inputs, contrary to large inputs, contribute negligibly to the runtime of our benchmarks and bear
little impact on Etino’s performance.
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Fig. 10. Speedups obtained by (i) Etino and (ii) dawncc against original, i.e., sequential code, on Setup 3.

Table 3. Evolution of speedups/slowdowns on Setup 1 for several input sizes. For Etino, we show all benchmarks
which weremodified on this setup. For dawncc, we show benchmarks for which Etino suggests nomodification,
e.g,. code should run on the CPU only, but dawncc still runs on the GPU. Etino avoids the slowdowns observed
in these programs.

Tool Benchmark
Speedup on

Small Input

Speedup on

Medium Input

Speedup on

Large Input

Speedup on

Huge Input

etino

cholesky -9.76x -2.60x -1.13x 1.06x

2MM -3.78x 20.10x 113.09x 214.13x

3MM -1.95x 29.04x 151.92x 258.41x

SYR2K -2.12x 1.28x 1.73x 1.79x

GEMM -5.77x 10.64x 70.03x 167.83x

3DCONV -37.00x -11.66x -2.79x -1.18x

collinear-list -2.65x -1.22x 1x 1x

dawncc

FannKuch -119.08x -190.66x -346.11x -465.79x

search-vector -103.48x -103.42x -105.75x -102.45x

MVT -33.37x -12.11x -5.16x -3.18x

5.5 RQ5: The Importance of Interprocedurality

Algorithm 1 uses a context of depth one to take scheduling decisions. We can demonstrate empiri-
cally that using contexts, even of depth one, has two important advantages, at least in our setups.
First, some functions, when observed in isolation, should run on the CPU, but when nested, should
run on the GPU. This combination increases the ratio of computation per memory transfer in the
full application; hence, amortizing the cost of transferring data. Second, there are situations in
which the same function should run on the CPU and on the GPU, in actual programs. An example
of such situation was given in Section 2.

These advantages are unlikely to surface on small benchmarks, such as PolyBench, MgBench or
BenchGame. Thus, to demonstrate them, we have applied Etino onto three different algorithms
whose implementation has been taken from [Da Mata et al. 2013]: k-means clustering, kNN
classification, and Frequent Itemset Mining (apriori). These are general purpose applications, more
complex and more irregular than the other benchmarks that we have used; hence, they exercise
more aspects of our algorithm. However, even though Algorithm 1 handles them automatically,
dawncc is not able to annotate them without user intervention. They have been written in a
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functional style based on linked lists. We had to replace these lists by arrays to enable automatic
annotation.
K-means and Frequent Itemsets illustrate the benefits of our context representation. These

benchmarks have functions that, depending on their callee, Etino assigns to the CPU or to the
GPU in all the three setups. For the largest inputs available for each program, we got, after Etino’s
parallelization, speedups of 14.6x in K-means, and 6.2x in Frequent Itemsets on Setup 1. Other setups
led to similar gains. The KNN classifier is also irregular and difficult to parallelize automatically.
Etino has assigned three, out of the six functions in this benchmark, to the GPU. Each function
is invoked at only one calling site; hence, no function can be assigned to different processors
depending on context. Yet, if we were to analyze these functions individually, without taking the
calling stack into consideration, only one of them would find its way to the GPU. In KNN, Etino
obtains the best speedups observed in the DataMining suite: with a 10-dimensional dataset of
100,000 points, answering 10,000 queries with k = 31, the parallel version is ≈ 75x faster than its
sequential counterpart on Setup 1.

6 RELATED WORK

The work that we have presented in this paper touches different facets of compiler research, related
to scheduling, autotuning and static analyses. In this section, we explain how we compare against
some of this previous work.
Mapping Program Parts into Heterogeneous Processors. Recent years have seen many new
approaches for code placement in heterogeneous architectures. Figure 11 provides the reader with a
perspective on where Etino stands, when compared to some of this previous art. We have grouped
different technologies according to how they answer the following questions:
• Does the method use runtime information? In this case, we have completely static or dynamic
approaches, and hybrid techniques. Static approaches tend to incur less runtime overhead;
dynamic techniques tend to be more precise, as they benefit from knowledge only available
once the program executes. Hybrid approaches either instrument programs to take applica-
tion’s workload into consideration [Margiolas and O’Boyle 2016; Piccoli et al. 2014], or use a
profiler to feedback runtime information to the compiler. Notice that, in this paper, runtime
information is used to calibrate a cost model. However, once the model is built, it works for
every application in a given architecture, without the need of a profiling phase.
• Does the method require intervention from users? In this category we have guided or fully
automatic approaches. Guided techniques force the user to touch the code that must be
optimized. Usually, this modus operandi asks for some familiarity with the program. Users
can carry out interventions by either coding the program using some specific library, à
la StarPU, some programming language, such as OpenCL, by inserting annotations into
the program, e.g. when using OpenACC, or by using a combination of these tasks, as the
Swift programming language which requires manual annotations so that the compiler can
automatically partition the application between client and server [Chong et al. 2007].
• Does the method adapt to the target architecture? Adaptive techniques can be customized to a
given architecture. Customization might be achieved through code instrumentation [Piccoli
et al. 2014], through a shadow process in charge of migrating tasks [Nishtala et al. 2017;
Petrucci et al. 2015], or through a pre-computed model [Sim et al. 2012]. We use machine
learning to find this model.

It is possible to expand the taxonomy seen in Figure 11 into further directions. For instance, some
approaches target heterogeneous processors running the same instruction set, such as those that
use big.LITTLE cores [Nishtala et al. 2017; Petrucci et al. 2015]. Others target processors that
use different ISAs, such as CPUs and GPUs. This diversity is not accounted for by Figure 11.
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Fig. 11. The taxonomy of work related to the placement of code on heterogeneous architectures.

Nevertheless, we believe that the figure already provides the reader with an intuition on the novel
aspects of Etino, given that our tool, to the best of our knowledge, stands alone as the first totally
static, automatic and adaptive method to place computations in heterogeneous hardware.
We believe that this ability to handle programs as they are, without modification, is one of

Etino’s big assets. To support this statement, we have compared it with a guided approach, with
which we had some familiarity: StarPU [Augonnet et al. 2011]. Before we tell our anecdote, we
warn the reader that we are comparing two very different systems, which were designed and
implemented with varying purposes. We have re-written one of the DataMining benchmarks,
DM/kmeans using StarPU’s library. Given our limited experience with this system, we opted for
the most straightforward implementation: we create one task to find the nearest centroid of a given
point. To perform this re-engineering, we had to modify one file, which had 120 lines of code. Such
intervention resulted in a file with 219 lines: 10 lines modified from the original code, and 109
lines added to it. This process of converting a file to use the StarPU API is not difficult, but it is
tedious. We had to: (i) write versions of the task for the different available processors; (ii) write some
code to initialize these tasks; and (iii) write code to invoke the tasks asynchronously. The original
version of the benchmark runs in 4m12.250± 0.5 secs (Setup 2); the version produced by Etino-pgcc
runs in 16.506 ± 0.5 secs; and the version converted to StarPU runs in 1m50.443 ± 0.5 secs. The
fact that StarPU does not outperform Etino in this case does not mean that Etino’s approach is
more efficient. StarPU cannot see that the several tasks are doing the same thing; hence, it cannot
bundle them together in the GPU, to benefit from the SIMD nature of that hardware. We could raise
the granularity of tasks, grouping them manually. But, in this case, the implementation becomes
more complex. Etino, in turn, does not produce code that runs concurrently on the CPU and GPU,
something that StarPU does.
Autotuning-Based Approaches to Calibrate Costs.Much work has been done to design new
analytical cost models that characterize heterogeneous devices [Sim et al. 2012; Song et al. 2013],
and tune these cost models so to enable better placement of computation in said devices [Bajrovic
et al. 2016; Basu et al. 2013; Muralidharan et al. 2016]. We chose to tune our cost model using
simulated annealing, because this technique is a black-box method. It suits any cost model and
objective function the user chooses to use. Using simulated annealing to tune cost models for
heterogeneous devices is not a new idea. Lin et al. [Lin et al. 2016] have applied it, in combination
with a genetic algorithm, to configure the dimension of a GPU kernel, in number of threads per
block or number of registers per threads. Along another direction, Hartono et al. [Hartono et al.
2009] have used the Orio autotuner, which uses simulated annealing among other techniques, to
find a good mix of optimizations for high-performance kernels. In our case, kernels are always
the same ś the decision that we take is where to run them. Thus, both Lin et al.’s and Hartono et

al.’s [Hartono et al. 2009] approaches are complementary to ours.
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Context Sensitive Analyses. There exists a vast literature about context sensitive analyses. Aho
et al. [Aho et al. 2006, Ch.12.5] provide an overview on this topic. Borrowing some terminology
from Might et al. [Might et al. 2010], we use a top-two frame abstraction, keeping track of the caller
of each function, but not the łcaller-of-the-callerž for instance. As pointed by Might et al., this
method naturally yields a polynomial time algorithm to enumerate contexts. The disadvantage of
this approach is the following: if we assume two call strings like f1 → д → h, and f2 → д → h,
then our algorithm only considers the location of д when determining the location of h. In other
words, neither f1 nor f2 will have a direct influence on the scheduling decision of h. They still have
indirect influence, as they determine the location of д. Therefore, by choosing shallow contexts ś
an approach widely adopted in industrial quality compilers [Lhoták and Hendren 2006] ś we are
trading precision for scalability.

7 CONCLUSION

This paper has presented a compiler-based algorithmic framework to schedule code in heteroge-
neous architectures. This framework consists of a static scheduling algorithm (seen in Section 3);
and a technique based on simulated annealing to tune the cost model that said algorithm uses (seen
in Section 4). We believe that this combination of techniques is the first purely compiler-based
approach to schedule code in heterogeneous devices. Given the raising popularity of such architec-
tures, and the recent advances made in terms of static analyses, we expect to see other approaches
of similar goal in the coming years.
During the implementation of Etino, we have faced several questions that, at that time, we

left unanswered. We believe that they constitute interesting problems, which we leave open for
researchers. Firstly, we leave the work of adapting Etino to generate code that uses multiple
processors concurrently. We have not explored such a possibility in this work; however, recent
forays in the field of dynamic scheduling seem to indicate that concurrency is not only possible, but
also highly profitable in a heterogeneous architecture [Wen and O’Boyle 2017]. Another problem
that we think deserves some attention concerns input size. The lack of input size information
at compile time may be compensated by making Etino insert checks into the program to guide
decisions at run time. Finally, a fair question that this paper touched, but did not answer, concerns
granularity: is the granularity of a function a good choice for static code placement in heterogenous
architectures? Loops and Single-Entry-Single-Exit regions are natural scheduling units, which, in
addition to functions, a tool like Etino could consider.
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