
167

Dynamic Dispatch of Context-Sensitive Optimizations

GABRIEL POESIA, Stanford University, USA

FERNANDO MAGNO QUINTÃO PEREIRA, UFMG, Brazil

Academia has spent much effort into making context-sensitive analyses practical, with great profit. However,

the implementation of context-sensitive optimizations, in contrast to analyses, is still not practical, due to

code-size explosion. This growth happens because current technology requires the cloning of full paths

in the Calling Context Tree. In this paper, we present a solution to this problem. We combine finite state

machines and dynamic dispatching to allow fully context-sensitive specialization while cloning only functions

that are effectively optimized. This technique makes it possible to apply very liberal optimizations, such as

context-sensitive constant propagation, in large programsÐsomething that could not have been easily done

before. We demonstrate the viability of our idea by formalizing it in Prolog, and implementing it in LLVM. As

a proof of concept, we have used our state machines to implement context-sensitive constant propagation

in LLVM. The binaries produced by traditional full cloning are 2.63 times larger than the binaries that we

generate with our state machines. When applied on Mozilla Firefox, our optimization increases binary size

from 7.2MB to 9.2MB. Full cloning, in contrast, yields a binary of 34MB.

CCS Concepts: · Software and its engineering → Compilers; Procedures, functions and subroutines; ·

Theory of computation→ Regular languages; Operational semantics.

Additional Key Words and Phrases: Compiler, Context-sensitive optimization, Dynamic dispatch

ACM Reference Format:

Gabriel Poesia and Fernando Magno Quintão Pereira. 2020. Dynamic Dispatch of Context-Sensitive Optimiza-

tions. Proc. ACM Program. Lang. 4, OOPSLA, Article 167 (November 2020), 28 pages. https://doi.org/10.1145/

3428235

1 INTRODUCTION

Context-sensitive compiler optimizations are known to be significantly more precise in various
scenarios when compared to their context-insensitive counterparts [Lattner et al. 2007; Whaley and
Lam 2004]. Due to this observation, academia and industry have devoted much time and energy
to scale up context-sensitive analyses [Arzt et al. 2014; Das 2003; Emami et al. 1994; Fähndrich
et al. 2000; Feng et al. 2014; Ghiya and Hendren 1996; Hind et al. 1999; Jeong et al. 2017; Li et al.
2020; Might et al. 2010; Milanova 2007; Milanova et al. 2014; Oh et al. 2014; Späth et al. 2019, 2016;
Thakur and Nandivada 2019, 2020; Thiessen and Lhoták 2017; Wei and Ryder 2015; Wilson and
Lam 1995; Yu et al. 2010]. Presently, we believe that state-of-the-art context-sensitive analyses can
be used in mainstream compilers, as demonstrated by Lattner et al. [2007], or by Li et al. [2013].
Nevertheless, even though we have today the technology to retrieve context-sensitive information
from large programs with speed and accuracy, making effective use of this information seems still
an unsolved problem.

Authors’ addresses: Gabriel Poesia, Computer Science, Stanford University, USA, me@gpoesia.com; Fernando Magno

Quintão Pereira, Computer Science, UFMG, Brazil, fernando@dcc.ufmg.br.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/11-ART167

https://doi.org/10.1145/3428235

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428235
https://doi.org/10.1145/3428235
https://doi.org/10.1145/3428235

167:2 Gabriel Poesia and Fernando Magno Quintão Pereira

Implementing Context-Sensitive Optimizations is Challenging. Applying the results of context-
sensitive optimizations is still difficult. The usual approach towards this end is to perform some
optimization once the context-sensitive analysis shows that said transformation is safe for every
possible context. This modus operandi misses one important opportunity for code improvement:
specialization. If the compiler proves that an optimization is safe for certain contexts, and unsafe
for others, then it can apply the optimization selectively, on the contexts where it is safe to do
so. This is accomplished via function inlining or cloning [Cooper et al. 1993; Das 2003; Dean et al.
1995a; Hall 1991; Metzger and Stroud 1993; Petrashko et al. 2016]. Nevertheless, due to code size
expansion, compilers do not resort to this kind of specialization, or apply it in limited ways. One of
the key challenges preventing specialization is the fact that not only the optimized functions must
be cloned, but whole paths of procedures within the program’s call graph must be also replicated.
Such paths lead from the function where information first becomes available (thus enabling the
optimization) to the function that is effectively transformed. Every function called in between must
be either cloned or inlined, as we further explain in Section 2.

However, the fact that mainstream compilers avoid applying context-sensitive specialization does
not mean that such approach is not in demand. For instance, just-in-time compilers often perform
context-sensitive specializations [Fluckiger et al. 2020]. In this case, context-sensitive information is
readily available, because the runtime engine has access to the state of the stack once it moves from
interpretation to compilation. Examples of code specialization in the JIT world include constant
propagation [Leopoldseder et al. 2018; Santos et al. 2013], type speculation [Dean et al. 1995a; Gal
et al. 2009; Hackett and Guo 2012], method resolution via inline caches [Hölzle et al. 1991; Vergu
and Visser 2018], fast symbol lookups [Stadler et al. 2016] and operation specialization [Vergu
and Visser 2018; Wang et al. 2014]. In some implementations of just-in-time compilers code size
explosion is not a problem: if a new version of a specialized function needs to be produced, its
old binary can be discarded [Lima et al. 2020]. In other implementations [Inoue et al. 2011], code
size explosion is still troublesome, often preventing more extensive optimizations. Similarly, static
compilers perform specialization in restricted scenarios. For instance, gcc, at the -O2 optimization
level, creates specialized versions of a function if it can infer that some of its parameters are
constant only in specific contexts, and it deems the tradeoff between speedup and code size increase
to be worthwhile1. DawnCC2 restricts specialization to two levels of the function stack [Poesia
et al. 2017]. Similarly, specialization of generic functions is common in languages with parametric
polymorphism [Petrashko et al. 2016]. Finally, there exists a whole branch of partial evaluation
dedicated to code specialization [Brown and Palsberg 2017]. In this paper, we present a technique
that makes this sort of context-sensitive specialization practical in general for static compilers.

Contribution: Mitigating Code Explosion with State Machines. We tackle the excessive code size
growth problem in context-sensitive optimizations by using an implicit state machine to track
the calling context, minimizing code duplication. By using our method, the number of function
clones that must be created is exactly the number of optimization opportunities found by the
context-sensitive analysis, regardless of the length of the call paths that must be taken to reach
optimized functions. Notice that the size of our state machine is still directly proportional to the
number of contexts in the target program. Thus, it can be exponential on the program size. However,
even in this worst-case scenario, it is a data structure that grows, not code, contrary to traditional
context-sensitive code specialization, as performed by Li et al. [2013] or Das [2003], for instance.
The generated code then uses dynamic dispatch to decide which version of a function must be called
at runtime by querying the state machine. The overhead of such calls and state machine updates

1https://gcc.gnu.org/svn/gcc/tags/gcc_6_3_0_release/gcc/ipa-cp.c
2http://cuda.dcc.ufmg.br/dawn/

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

https://gcc.gnu.org/svn/gcc/tags/gcc_6_3_0_release/gcc/ipa-cp.c
http://cuda.dcc.ufmg.br/dawn/

Dynamic Dispatch of Context-Sensitive Optimizations 167:3

only impacts relevant paths in the call graph: regular function calls are performed in paths that do
not contain optimized functions. Furthermore, our approach naturally handles recursion, making it
applicable in situations in which function inlining could not be used to produce specialized code.

Summary of Results. To validate our ideas, we have implemented a context-sensitive version
of inter-procedural constant propagation in LLVM [Lattner and Adve 2004]. Our implementation
clones every function that is amenable to code specialization. Typical clone-based optimizations, in
contrast, are equivalent to unrestricted inlining: they clone every function in contexts leading to
specialized procedures. We chose constant propagation as our example of context-sensitive code
specialization because it is simple and extensive: it is hard to think about a static optimization that
produces a larger number of specialized functions. Nevertheless, our ideas can be combined with
other optimizations that rely on context-sensitive information and code cloning. We have tested our
technique onto 209 benchmarks, taken from the LLVM test suite and from SPEC CPU2006/CPU2017.
The executables that we produce are as fast as those produced with full cloning. The programs
optimized with our approach took 1,517 seconds to run in total, vs 1,515 seconds taken by the
programs transformed with full cloning. In other words, the overhead of our state machines is not
statistically significant within a confidence interval of 95%. On the other hand, their benefit, in
terms of code size reduction, is substantial. We generate 141.27MB for those 209 executables, vs
389.85MB produced with full cloning. We can summarize our contributions as follows:

Method: Our key contribution is a technique to implement context-sensitive optimizations,
which creates a number of function clones proportional to the number of routines that can
be optimized, instead of proportional to the size of the context call tree. As we explain in
Section 2, the core idea behind this technique is a combination of state machines and indirect
calls, à la dynamic dispatch, to select particular calling contexts. Our approach handles
recursive programs, and can be parameterized to different compiler optimizations.

Formalization: Section 3 provides a formal description of our approach, including the seman-
tics of MiniLog, a programming language with a minimum set of constructs necessary to
implement our technique. That section also contains correctness proofs, showing that our
state machines are equivalent to full code specialization. We have implementedMiniLog in
Prolog, so that one can validate our formal notation in an actual interpreter.

Implementation: Section 4 describes the implementation of our technique in LLVM 10.0.0,
together with its empirical evaluation. To the best of our knowledge, our tool brings in the
first implementation of a fully context-sensitive code specialization strategy that does not
resort to code replication to track calling contexts. Although we have experimented only with
context-sensitive constant propagation, our ideas can be combined with other optimizations
that rely on context-sensitive information and code cloning.

2 OVERVIEW

The vast majority of computer languages provide developers with the abstraction of functions
(or procedures, subroutines, methods, etc). If a dataflow analysis propagates information across
the boundaries of functions, then it is called interprocedural. Interprocedural analyses are context
insensitive or context sensitive. In this paper, we focus on the latter. For an informal definition of
this family of dataflow analyses, we quote Khedker et al.:

łIf the information discovered by an interprocedural analysis for a function could vary from

one calling context of the function to another, then the analysis is context sensitive. A context

insensitive analysis does not distinguish between different calling contexts and computes the

same information for all calling contexts of a function.ž [Khedker et al. 2009]

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:4 Gabriel Poesia and Fernando Magno Quintão Pereira

void a_0() { printf("%d\n", 0); }
void a_1() { printf("%d\n", 1); }
void a_2() { printf("%d\n", 2); }
void a_3() { printf("%d\n", 3); }
void b_0() {
 a_0();
 a_1();
}
void b_1() {
 a_2();
 a_3();
}
void c_0() {
 b_0();
 b_1();
}
int main() { c_0(); }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

main

c_0()

b_0() b_1()

a_0() a_1() a_2() a_3()

$> 0 $> 1 $> 2 $> 3

void a(int x) {
 printf("%d\n", x);
}
void b(int x) {
 a(2*x);
 a(2*x + 1);
}
void c(int x) {
 b(2*x);
 b(2*x + 1);
}
int main() {
 c(0);
}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

12:main

13:c(0)

9:b(0) 10:b(1)

5:a(0) 6:a(1) 5:a(2) 6:a(3)

$> 0 $> 1 $> 2 $> 3

(a) (b) (c) (d)

Fig. 1. (a) Program before context-sensitive optimization. (b) Calling context tree of original program. (c)
Program after context-sensitive constant propagation. (d) CCT of the optimized program.

The calling context of an activation of function f is given by the sequence of function calls cur-
rently stacked when f is invoked. Definition 2.1 formalizes this notion. According to Definition 2.1,
we can refer to the instructions in a program using some consistent numbering scheme, such as
line numbers if we disallow having two statements on the same line.

Definition 2.1 (Contexts). A Context C of a program P is a sequence of integers that index call
instructions in P . We denote C by the sequence C∅ → C1 → C2 → · · · → Cn . The empty context,
in which execution begins, is denoted by C∅. The function invoked by Cn (the last call instruction
of C) is the active function of C .

2.1 The Challenge of Implementing Context-Sensitive Optimizations

Context-sensitive analyses can be more precise than their context-insensitive counterparts; how-
ever, they are also more expensive. This cost is high because the amount of static information
necessary to track different calling contexts can be exponential on the size of non-recursive pro-
grams [Nielson et al. 1999, Sec. 2.5.4]. Moreover, in face of recursion, general context-sensitive
analysis is undecidable [Reps 2000].

If the problem of obtaining context-sensitive information statically is difficult, the implementation
of compiler optimizations that use this information seems to be even harder. The compiler literature
describes two main ways to enable context-aware optimizations: inlining and cloning. Many
industrial compilers, such as gcc, LLVM, Open64, HotSpot and Mozilla’s IonMonkey implement
inlining at higher optimization levels. Cloning is also found in mainstream products. For instance,
gcc clones a function if it has only one calling site in the entire program, and its linkage is internal. A
similar approach is adopted by Mozilla’s TraceMonkey, albeit dynamically [Santos et al. 2013]. As a
final example, Scala clones generic functions that are marked with the@specialized annotation. The
difficulty of applying either inlining or cloning stems from the same problem: code size explosion.
The unrestricted application of any of these techniques might result in an optimized program
that is exponentially larger than its original version. Example 2.2 illustrates this shortcoming. The
example mentions the Calling Context Tree (CCT), a graphic representation of every possible calling
context in a program [Ausiello et al. 2012].

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:5

Example 2.2. Figure 1 (a) shows a C/C++ program, plus its CCT, which contains four different
invocations of function a. Context-sensitive constant propagation lets us replace each instance
of a’s argument x, with a constant. The resulting program appears in Figure 1 (c), and its calling
context tree appears in Figure 1 (d). The graphs in Figures 1 (b) and (d) are isomorphic, as they
encode the same semantics. Notice that a context-insensitive analysis would not be able to carry
out this transformation, as the value of x in lines 5 and 6 of Figure 1 (a) varies at runtime.

To implement interprocedural context-sensitive constant propagation in the program of Figure 1
(a), we had to produce a clone of each function, for each calling context where that function can be
invoked. This fact is unfortunate, because the actual effect of the optimization, e.g., the replacement
of a’s argument x by a constant, can only be observed in function a itself. The other clones only
exist to distinguish one context from the other. Henceforth, we shall call the optimized function a
leaf3, and the call sites leading to its invocation the path. This example takes us to one of the key
shortcomings of context-sensitive optimizations: the number of clones necessary to implement
unrestricted context-sensitive optimizations is proportional to the number of calling contexts, not
to the number of instances of functions actually optimized.

Analysis Optimization

.Petrashko.et.al..2016 CS CI

.Full.inlining CS CS.(graph)

.Li.et.al..2013 CS CS.(path)

.This.paper CS CS.(leaf)

Fig. 2. Previous work in perspective.

This shortcoming has motivated a long string of re-
search to make the implementation of fully (unrestricted)

context-sensitive optimizations a viable endeavour. Fig-
ure 2 provides some perspective on previous attempts,
contrasting themwith this work. The figure distinguishes
the static analysis that enables an optimization, and the
optimization itself. All those four techniques rely on fully
context-sensitive (CS) static analyses to discover opti-
mization opportunities. However, to avoid cloning too
many functions, they resort to different strategies. Pe-
trashko et al. [2016] only clones leaves, but, in this case,
cloning happens when the static information, even though context-sensitive, is invariant at a given
program point where a function is invoked, regardless of the calling path leading to it. We shall say,
in this case, that the static analysis is context-sensitive, but the optimization is context-insensitive
(CI). Such approach seems to be very popular, as we can infer from the Related Work Section
of Sridharan and Bodík [2006]. This is in contrast with full inlining, which is the epitome of the
context-sensitive optimization. However, full inlining is not practical, due to code size explosion.
To deal with this problem, Li et al. [2013] only clone paths that are bound to different static facts
inferred by the context-sensitive analysis. If every path leads to a different version of a leaf, then this
approach degenerates to full inlining. Finally, as we clarify in Section 2.2, our approach only clones
leaves. We might transform functions in the calling path; nevertheless, their implementations shall
remain unique.

2.2 State Machines to the Rescue

To circumvent the problem just mentioned, we implement context sensitive-optimizations via
a combination of a state machine and dynamic dispatch. The guarantee that this arrangement
provides is stated in Definition 2.3, and illustrated in Example 2.4.

Definition 2.3 (Guarantee). Let A be a context-sensitive analysis, and O be a context-sensitive
optimization. If P is a program, then, for every function F ∈ P , we let A(F ,C) be the facts that A
infers about F at context C . We say that F is a leaf if A(F ,C) is non-trivial. Non-trivial static facts

3Notice that leaf functions might call other routinesÐthis terminology only indicates that the function is optimizable.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:6 Gabriel Poesia and Fernando Magno Quintão Pereira

S∅

S1

S2 S3

S4 S5 S6 S7

11

87

43 43

−1

−1
−1

−1−1
−1

−1

void* transition(int next) {
 switch(state) {
 case 2: {
 switch(next) {
 case 3:
 state = 4;
 return &a_0;
 case 4:
 state = 5;
 return &a_1;
 case -1:
 state = 1;
 return NULL;
 default: error();
 }
 ...
 }
 }
}

void a_0(int x) { printf(“%d\n”, 0); }
void a_1(int x) { printf(“%d\n”, 1); }
void a_2(int x) { printf(“%d\n”, 2); }
void a_3(int x) { printf(“%d\n”, 3); }
void b(int x) {
 { auto p = transition(3); p(x);
 transition(-1); }
 { auto p = transition(4); p(x);
 transition(-1); }
}
void c(int x) {
 { auto p = transition(7); b(x);
 transition(-1); }
 { auto p = transition(8); b(x);
 transition(-1); }
}
int main() {
 { auto p = transition(11); c(x);
 transition(-1);}
} (a) (b) (c)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

19

Fig. 3. (a) Program after context-sensitive optimization. (b) State machine that tracks context changes. (c)
The transition function, which implements state switching and selects which version of an optimized function
to call.

allow O to specialize F in context C , i.e., O(F ,C) = F ′, F , F ′. Hence, leaf functions are amenable
to optimization in some contexts. To implementO , the optimization proposed in this paper delivers
the following guarantee: it produces one clone of F for each A(F ,C) that yields non-trivial static
facts. Thus, unoptimized functions are not duplicated.

Example 2.4. Figure 3 (a) shows an optimized version of the program earlier seen in Figure 1. The
context-sensitive optimization is constant propagation. The calling context tree has four leaves, one
for each activation of function aÐeach with a different constant as argument. Figure 3 (a) contains
calls to a function transition, which is in charge of controlling a state machine that tracks calling
contexts. Such state machine is shown in Figure 3 (b). At each state shift, transition might return
a pointer to the next function to be invoked. An example of the code that performs this action
appears in Figure 3 (c). We are showing the implementation of state S2, that decides, among two
optimized versions of function a, (a_0 and a_1), which one should be invoked next.

The state machine lets us distinguish, at runtime, the different contexts that we have analyzed
statically. Before invoking a function f , we switch the program state, passing appropriate selectors
to the state machine. A new state change happens also when f returns. Notice that function
invocation is the sole event that determines a change in context. When necessary to invoke a
function д that we have been able to optimize, the current state lets us determine which version of
д should be called. To implement this selection, we represent д as a pointer, whose target is defined
by the state machine. In other words, we are creating a virtual table that contains entries for every
function that could be optimized due to context-sensitive information produced statically.

In Figure 3 (a) we have four clones of function a, the only routine that could be transformed by our
initial example of optimization: constant propagation. The other functions, which do not present
optimization opportunities, remain unchanged. By implementing context-sensitive optimizations
with a state machine, we ensure that the number of clones is upper bounded by the number of
disjoint code transformations that can be performed. As we show in Section 4, in practice this
number is much smaller than the number of possible contexts that a static analysis must recognize.
However, we are not reducing the asymptotic worst-case bound on the number of clones: it is
still exponential on the program size. To see how this worst case emerges, it suffices to consider a
balanced binary calling context tree, in which every leaf represents an optimized function.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:7

3 FORMAL SPECIFICATION

This section explains howwe implement context-sensitive optimizations. In Section 3.1 we introduce
MiniLog, a core programming language that gives us the necessary syntax to explain our ideas. We
have implemented MiniLog in Prolog, and have used this implementation to design the algorithms
that we present in this paper. Our code transformation engine is parameterized by a context-
sensitive optimization, a notion defined in Section 3.2. Given such an optimization, Algorithm 1
(Section 3.3) converts a program Porig into an optimized program Pmin . This new program relies on
a finite state machine to decide which functions are called at each invocation site. The generation of
this FSM is the subject of Section 3.4. Section 3.5 states a few properties of our approach. Section 3.6
provides details of our implementation in LLVM. Finally, Section 3.7 discusses an alternative
implementation of the state transitions based on an inlined state machine. Proofs of Theorems and
Properties presented in this Section are available as supplementary material stored in the ACM
Digital Library.

3.1 MiniLog: core Syntax

Figure 5 describes the syntax of MiniLog. MiniLog has statically-scoped local variables, simple
arithmetic and boolean expressions, first-class functions, and conditionals. The only type is integer.
The only control flow syntax consists in if-then-else blocks. Iteration is achieved through recursive
calls. Notice that the need for recursion, combined with static scoping, requires us special syntax
to implement recursive functions, similarly to the fun keyword of ML, or the letrec keyword
of Scheme. We shall omit this special syntax from our presentation, in order to keep MiniLog’s
definition simple. Nevertheless, we emphasize that MiniLog’s actual implementation, as well as
all the developments in the rest of this paper, handle recursive functions. In Section 3.2 we shall
return to some of this syntax, the forward declaration, which is necessary for the implementation
of our state machines.

Example 3.1. Figure 4 (a) shows our original example, introduced in Figure 1 (b), implemented
inMiniLog. The expression 2*x+1 (originally in line 12 of Figure 1 (b)) was replaced by input, to
prevent constant propagation. This modification will let us explain how we combine optimized
and non-optimized program parts. Notice that Figure 5 does not define the syntax of logic and
arithmetic expressions, for the sake of space. Nevertheless, we shall assume that such expressions
exist, and shall use them freely, as we do in lines 6, 7, and 11 of Figure 4 (a).

Given MiniLog’s syntax, Definition 3.2 revisits the concept of Context-Sensitive Optimization.
According to this definition, if a compiler implements a context-sensitive optimization O , then
whenever context c becomes active during the execution of the program, the body of the active
function is O(c). Put it in another way, a context-sensitive optimization maps program contexts to
clones of specialized functions. Example 3.3 illustrates these observations.

Definition 3.2 (Context-Sensitive Optimization inMiniLog). A context-sensitive optimization O :

Context 7→ P is a partial function that maps an optimizable context to the optimized body of the
function that should run in that context. In this definition, we let program(P) be a syntactically
validMiniLog program.

Example 3.3. Figure 4 (b) shows the calling context tree of the program that appears in Figure 4
(a). We have two contexts which are amenable to be optimized by constant propagation: C0 =

c∅ → c1 → c2 → c3, and C1 = c∅ → c1 → c2 → c4. In the first context, C0, we can replace the
call of function a by a statement that prints the constant 0. In C1, we can do the same, but for the
constant 1. Thus, we have thatO(C0) = function(a_0, x, print(0);), and thatO(C1) = function(a_1, x,
print(1);).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:8 Gabriel Poesia and Fernando Magno Quintão Pereira

function(a, x,
 print(x);
);

function(b, x,
 call(a, 2*x);
 call(a, 2*x + 1);
);

function(c, x,
 call(b, 2*x);
 call(b, input);
);

call(c, 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 (b)

C∅

15:C1

11:C2 12:C5

6:C3 7:C76:C67:C4

$> 0 $> ?$> ?$> 1(a)

S1

s∅

S2

S3 S4

11

-1

76

15

−1

−1−1

(c)

Fig. 4. (a) Modified version of program seen in Figure 1. The unknown variable input, in line 12, prevents
constant propagation from optimizing the whole context tree. (b) Calling Context Tree of the program. We
have highlighted the Optimization Tree (see Definition 3.6). (c) State Machine produced for this example.
Each context in the optimization tree creates a new state.

Values:
V ∈ {. . . ,−1, 0, 1, 2, . . .}

exp(V)
Names:

A ∈ (a . . . zA . . .Z)∗

name(A)
Variables:

name(A)

exp(A)

Instructions:
instruction(I)

program(I ;)
Programs:

instruction(I) program(P)

program(I ; P)

Output:
exp(E)

instruction(print(E))
Arithmetics:

exp(E1) exp(E2)

exp(E1 ⊕ E2), ⊕ ∈ {+, −, ×, etc}

Allocation:
name(A) exp(E)

instruction(set(A, E))
Invocation:

name(Name) name(Arд) exp(Ret)

instruction(call(Name, Arд, Ret))

Assignment:
name(A) exp(E)

instruction(def(A, E))
Function:

name(Name) name(Arд) program(Body)

instruction(function(Name, Arд, Body))

Return:
exp(E)

instruction(return(E))
Conditional:

exp(E) program(P1) program(P2)

instruction(ifelse(E, P1, P2))

Fig. 5. The Syntax of MiniLog.

3.2 Optimization Trees

In this section, we present our main contribution: a method for generating minimal code that imple-
ments a given context-sensitive optimization (Definition 3.2). We useMiniLog for our presentation.
We assume the instructions in a program P are numbered, in such a way that every instruction has
a unique number, and we refer to the i-th instruction in P as Pi . Also, for this section, we assume
that there is a single static path of call sites that reaches each optimized context. This class of
contexts is formalized in Definition 3.4.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:9

Definition 3.4 (Complete contexts). A context C is a complete context of a MiniLog program P if
Pi , its first call instruction, is not contained in the body of any function declaration4.

Example 3.5. The context formed by the calls at lines 15, 11, 6, reached during the execution of
the program in Figure 4 is complete, as its first call instruction (at line 15) lays outside the scope
of any other function.

We can widen this definition, allowing contexts to denote only a suffix of the required sequence
of calls needed to activate a function. In Section 3.6, we discuss how we have adapted the presented
solution to accommodate partial contexts in an efficient manner. However, for the sake of simplicity,
our next developments assume only complete contexts. Nowwemove on to defineOptimization Trees.
This data structure shall be necessary to guide the algorithm that implements our context-sensitive
optimizations.

Definition 3.6 (Optimization Trees). LetO be a context-sensitive optimization for a program P , and
D(O) be the domain of O , i.e., the contexts for which some optimization applies. An optimization
tree T (O) is a geometric interpretation of D(O). Each vertex of this tree represents a distinct
context. Edges correspond to call instructions. The root of the tree is the empty contextC∅, where
execution begins.

The Optimization Tree is a subgraph of the Calling Context Tree, and its nodes are all contexts
that are either optimized by O or that lie on a path to an optimized context. Example 3.7 sheds
some light on this definition.

Example 3.7. We have highlighted, in Figure 4 (b), the optimization tree that exists embedded in
the calling context tree of the program in Figure 4 (a).

The nodes of an Optimization Tree are all contexts which are relevant to the application of the
optimization. Because not only the optimized contexts (those in D(O)), but also all their prefixes
are in T (O), a call instruction in the original program P may only cause the calling context to
change insideT (O) or to leaveT (O). However, once the current context is not inT (O), no sequence
of further call instructions can bring the program back to a context in T (O)Ðreturn operations,
on the other hand, can. Theorem 3.8 summarizes this result.

Theorem 3.8. Let P be aMiniLog program. LetC → C ′ be a transition between two calling contexts

that may happen when the execution of P reaches a call instruction Pi . For all possible C and C ′, one

of the following three cases is true:

(1) Both C and C ′ are nodes of T (O);

(2) C is a node of T (O), and C ′ is not;

(3) Neither C nor C ′ are nodes of T (O).

3.3 Code Transformation

The cases in Theorem 3.8 are the basis of our method of tracking calling contexts at run-time. We
keep track of the contexts that form the Optimization Tree of a given context-sensitive optimization
O . For each optimization tree, we produce a state machine, and generate function clones. Notice that
one optimization tree can represent the combination of several different compiler optimizations,
such as constant propagation, type specialization, pointer disambiguation, etc. In other words, we
shall produce one state machine per programÐnot one state machine per program optimization.

4This definition refers toMiniLog specifically. In languages where the entry-point is the main function, as in C or Java, a

complete context would be a context where the first call instruction is in function main.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:10 Gabriel Poesia and Fernando Magno Quintão Pereira

Code generation is based on a Finite State Machine (FSM) derived from T (O). In this section, we
show how to transform the program assuming that we have the state machine. Section 3.4 shows
how to build the FSM. Algorithm 1 transforms an input program P to apply a context-sensitive
optimization O , optimizing program P in-place. It has the following phases:

(1) Declares the transition function, which queries and updates the implicit state machine.
Section 3.4 shows how to build the FSM and implement transition. For now, the following
assumptions on transition are made:
• transition takes one parameter: the input argument to the transition function of the FSM.
It can be either an identifier of a call instruction, or −1 (for signaling the return operation).
• Its output is a reference to the function that should be called in the state after the transition,
and it is stored in the global variable sm_function. Depending on the current state (calling
context), the returned function might or might not be optimized.

(2) Declares the optimized functions given in O , naming them after the context they should be
called in.

(3) Declares one copy of each function that appears in at least one context in the Optimization
Tree. This is an optimization, to avoid invoking the state machine within the body of functions
that do not belong into the optimization tree. At most one copy of each function is made,
even if it appears several times in T (O). The names of these copies are the names of the
original functions added to the łctx_tr_ž prefix.

(4) Modifies function calls that correspond to edges in T (O) to update the state machine before
and after calling the target function. To be modified, a function call must correspond to an
edge in the Optimization Tree. Moreover, it must be either a top-level instruction (i.e. outside
of all functions), or contained in one of the context-tracking functions created in phase 3.
Modified calls are replaced by a sequence of 3 function calls: one to move the state machine
to the next state and retrieve the function to be called, one to call the target function, and
one to return the state machine to the previous state.

The main advantage of using Algorithm 1 to apply an optimization is that the number of copies
of functions made is exactly the number of distinct functions that appear in the Optimization Tree.
Should traditional function cloning or inlining be used, a function’s body would be copied once for
each of its occurrences in the Optimization Tree. In this way, we minimize code duplication, using
a data structure to track the calling context, instead of context-specific copies of code (on which
both cloning and inlining are based).

Example 3.9. Figure 6 shows the code that Algorithm 1 produces for the program in Figure 4
(a), using the optimization tree in Figure 4 (b). The state machine produced in this case appears in
Figure 4 (c). We have produced two clones of function a: a_0 and a_1; one per optimized context.

Avoiding the overhead on non-optimized functions. Our state machine lets us clone only leaf
functions, i.e., code that can actually be specialized. However, in this case, it would be necessary
to surround with state transitions every function invocation. This would impose an unnecessary
overhead upon the parts of the program that were not optimized. To avoid this overhead, we produce
one, and only one, clone of every path function that is in the optimized tree. This clone, which
bears the prefix ctx_sens_, contains the machinery to switch states in our FSM. Such functions are
produced by step (3) of Algorithm 1. We refer to these functions as auxiliary path clones.

Example 3.10. Figure 3.9 contains two auxiliary path clones: ctx_sens_b and ctx_sens_c. We
also kept the original versions of functions b and c. The original, untouched, functions are used
in contexts C1 → C5 → C6 and C1 → C5 → C7 (see Figure 4), which could not be optimized by

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:11

Data: Program P , Context-sensitive optimization O

Result: Optimized program OptP

/* (1) Declare FSM ‘transition’ function. */

OptP ← DeclareT ransit ionFunction(P, O) ;

/* (2) Declare optimized functions. */

forall Context ∈ D(O) do

OptP ← Inser t FunctionDeclaration(OptP, ContextName(C), O (C));

end

/* (3 - Optional) Create 1 ‘context-tracking’ clone for every path function in T (O). */

OptT ree ← T (O) ;

forall Node ∈ OptT ree do

CtxT rackinдFuncName = “ctx_tr_′′ + Node .Function .Name ;

if not I sDeclared (OptP, CtxSensit iveName) then

OptP ← Inser t FunctionDeclaration(P, CtxT rackinдFuncName, Node .Function .Body);

end

end

/* (4) Modify relevant function calls to track calling context. */

forall instruction Pi ∈ OptP do
if

I sOptT reeEdдe(OptT ree, i)and (I sT opLevel Instruction(P, i) or I s InCtxT rackinдFunction(P, i))

then
OptP ← Replace(OptP, Pi ,[

call(transit ion, i),

call(sm_f unction, CallArд(Pi)),

call(transit ion, −1)

]);

end

end

Algorithm 1: Code generation procedure that populates theMiniLog program with calls to the
FSM that tracks contexts.

constant propagation. Notice that, independent on the optimization tree, we would not produce
more versions of ctx_sens_b and ctx_sens_c.

3.4 Construction of the Finite State Machine

The cases in Theorem 3.8 are our basis for building an FSM derived from T (O). Algorithm 2 builds
the FSM needed by Algorithm 1. In phase 1, every node ofT (O) becomes a state in the FSM. Phase 2
covers transitions that fall into Case 1 of Theorem 3.8. Call instructions that correspond to edges in
T (O) become transitions in the FSM, and their identifier in the program matches the corresponding
transition’s label in the FSM. Moreover, the FSM has transitions that correspond to returning from
function calls, which always have the same sentinel label, −1, regardless of the context. Case 3
of Theorem 3.8 is handled implicitly. Algorithms 1 and 2 are completely oblivious to transitions
between contexts not in T (O); hence, such calls are processed as in the original program.

Calls that force the program flow to leave the Optimization Tree (Case 2 in Theorem 3.8) may be
further divided into two classes. Some call instructions never cause transitions inside T (O), i.e. no
edge in T (O) corresponds to them. We shall name these calls context-insensitive. They are context-
insensitive with regards to the optimization described by T (O). Such calls are not modified by
Algorithm 1; thus, the context-insensitive version of the callee is invoked. In other words, context-
insensitive functions cannot provoke transitions in the FSM. Therefore, when a context-insensitive
function returns, the FSM will be in the state reached by the last caller inT (O). The second category
of functions that might cause the program to leave T (O) are called context-semisensitive. They may

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:12 Gabriel Poesia and Fernando Magno Quintão Pereira

def(state, 0);
def(sm_function, 0);
function(transition,
 [next,
 forward(a_0),
 forward(a_3),
 forward(a),
 forward(b),
 forward(ctx_sens_b),
 forward(c),
 forward(ctx_sens_c)
],
 ifelse(next = 15 && state = 0,
 set(state, 1);
 set(sm_function, c);
 , % else
 ifelse(next = -1 && state = 1,
 set(state, 0);
 , % else
 ifelse (...);
)
);
);

(1) Declare FSM 'transition'
 function:

(2) Declare optimized functions

function(a_0, x, print(0));
function(a_1, x, print(1));

function(ctx_sens_b, x,
 call(transition, 3);
 call(sm_function, 2*x);
 call(transition, -1);

 call(transition, 4);
 call(sm_function, 2*x + 1);
 call(transition, -1);
);

function(ctx_sens_c, x,
 call(transition, 7);
 call(sm_function, 2*x);
 call(transition, -1);

 call(b, input);
);

call(transition, 11);
call(sm_function, 0);
call(transition, -1);

(3) Create context tracking
 copies of functions that
 are in the opt. tree:

(4) Modify relevant functions,
 e.g., insert calls to the
 transition state machine
 around invocations of
 optimized function

function(a, x, print(x));
function(b, x,
 call(a, 2*x);
 call(a, 2*x + 1);
);
function(c, x,
 call(b, 2*x);
 call(b, input);
);

Functions originally part
of the program

Forward declarations are a minilog feature. They allow
recursive calls, and, in C/C++/LLVM IR, they are used
to build a compilable version of the optimized program.

Unknown
value hinders
constant prop.
at this call site.

Non-optimized
function calls
are not touched.

Fig. 6. Code produced by Algorithm 1, to implement constant propagation on the program seen in Figure 4
(a). The box on the right shows the optimized version of the code in the center-bottom part of the figure.

cause the program to leave T (O) in some contexts, but transition inside T (O) in others. Such calls
require special care. Example 3.11 illustrates this concept.

Example 3.11. Figure 7 (a) shows the program earlier seen in Figure 1, written in MiniLog.
Contrary to the MiniLog program in Figure 4, every invocation of function a, in this new version,
could be fully optimized by constant propagation. However, for the sake of the example, we assume
that only contexts C∅ → C2 → C3 and C∅ → C5 → C7 are optimized. The optimization tree
appears in Figure 7 (b). This assumption gives us the opportunity to show how we navigate in and
out of the optimization tree during the execution of the program. In Figure 7 (a), the call in line 6
is an example of a context-semisensitive invocation. When the program is in context C2, the call
from line 6 leads it to context C3, which is optimized. However, in context C5, the same call leads
the program flow to context C6, which is not part of the optimization tree. In the state machine,
seen in Figure 7 (c), this unoptimized context is represented as state R5. Once this unoptimized
invocation of b returns, the transition key −1 moves the active state back to state S5.

Going back to Example 3.11, to handle the transition between C5 to C6, we create one special
state R5 which has a single transition, returning to S5. Such state is called a return-only state. When
a transition to a return-only state happens, the context-insensitive version of the target function
is called. While that function runs, the FSM sits in the return-only state. When the call returns,
because the caller is a context-sensitive function, it will feed the current state the −1 sentinel input.
This transition key causes the FSM to return to the last state visited while the program was within
the optimization tree. This scheme, implemented in Phase 3 of Algorithm 2, completes our coverage
of all possible transition types in Theorem 3.8.
The transition function used by Algorithm 1 is implemented in MiniLog as a sequence

of ifelse statements, that test all (CurrentState, Input) pairs. In our LLVM implementation,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:13

Data: Context-sensitive optimization O

Result: Finite State Machine FSM

FSM ← new Finite State Machine;

/* (1) Create states for nodes in T (O). */

OptTree ← T (O) ;

forall Node ∈ OptTree .Nodes do

FSM .addState(Node .Label);

end

/* Map from Function to set of edges that cause at least one transition inside

T (O), */ /* in any context the function is active in */

TransitionSet = empty map : Function 7→ Set < Edдe, label >;

/* (2) Create transitions for calls/returns inside T (O) (Case 1 of Thm. 3.8). */

forall Node ∈ OptTree .Nodes do

forall Edдe ∈ Node .EdдesToChildren do

FSM .addTransition(Node .Label ,Edдe .Destination.Label ,Edдe .CallInstLabel);

FSM .addTransition(Edдe .Destination.Label ,Node .Label ,−1);

TransitionSet[Node .ActiveFun] ← TransitionSet[Node .ActiveFun] ∪ {Edдe .CallInstLabel};

end

end

/* (3) Create return-only states & transitions that leave T (O) (Case 2 of

Thm. 3.8). */

forall Node ∈ OptTree .Node do

/* List transitions that Node.ActiveFun might have in other nodes, */

/* but not at the current node. If there are any, we need a return-only state. */

MissinдTransitions ←

TransitionSet[Node .ActiveFun] \ {E.CallInstLabel : E ∈ Node .EdдesToChildren};

if MissinдTransitions , � then

ReturnOnlyStateLabel ← concatenate(“R”,Node .Label);

FSM .addState(ReturnOnlyStateLabel);

FSM .addTransition(ReturnOnlyStateLabel ,Node .Label ,−1);

forallMissinдLabel ∈ MissinдTransitions do

FSM .addTransition(Node .Label ,ReturnOnlyStateLabel ,MissinдLabel);

end

end

end

Algorithm 2: Algorithm for building a Finite State Machine which tracks contexts that are
relevant to a given context-sensitive optimization.

transition is implemented using switch statements, which run inO(1) [Korobeynikov 2007]. First,
a switch statement identifies the current state. Then, another nested switch statement acts upon
the transition key. All state and transition identifiers are mapped beforehand to contiguous integer
ranges to speed-up this implementation. The function returned by transition depends on the
type of the target state. If the state of the FSM after the transition is a node of T (O), then either the
optimized function (given by O , in Definition 3.2) or the context-sensitive version of the callee is
returned. If a return-only state is reached, then transition returns the original (context-insensitive)
version of the callee.

Theorem 3.12 (Correctness). The transformation CS preserves the semantics of programs.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:14 Gabriel Poesia and Fernando Magno Quintão Pereira

(b) (c)

function(a, x,
 print(x);
);

function(b, x,
 call(a, 2*x);
 call(a, 2*x + 1);
);

function(c, x,
 call(b, 2*x);
 call(b, 2*x + 1);
);

call(c, 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C∅

15:C1

11:C2 12:C5

6:C3 7:C4 6:C6 7:C7

$> 0 $> 1 $> 2 $> 3

S∅

S1

S2 S5

R2 S3 S7 R5

15

1211

67 67

-1

-1 -1

-1-1-1
-1

(a)

Fig. 7. (a) Example of program that can be fully optimized with constant propagation. (b) Optimization Tree
that we obtain, assuming that only the two highlighted contexts are optimized. (c) The FSM derived from the
Optimization Tree. In the FSM, a return-only state corresponding to state Ci is labeled Ri . These states are
created by step (3) of Algorithm 2.

3.5 Properties

Given a context-sensitive optimization O to be applied onto a program P , we use Algorithm 2 to
generate the FSM that supports the application of O , and use Algorithm 1 to transform the original
source code. This transformation gives us an optimized program that implementsO . Our algorithm
creates one clone for each leaf function, and at most one clone for any path function. Path functions
are cloned only once, regardless of how many times they appear in the optimization tree. We
emphasize that the creation of this clone is optionalÐwe do it to avoid imposing on non-optimized
functions the burden of changing the FSM. Property 3.13 puts a bound on the number of clones
that we produce for a given optimization tree.

Property 3.13. Algorithm 1 creates one clone per leaf function in T (O). Optionally, it creates one

auxiliary path function to implement all the occurrences of path functions that have the same name.

The generated transition function will contain a representation of the entire Optimization
Tree; hence, the FSM’s size can be exponential. However, the FSM is equivalent to a perfect hash-
table. Thus, contrary to unrestricted cloning, or unrestricted inlining, it is a data structure (which
represents the state machine), not code that grows. As Section 4 shows, tracking contexts using
this method lets us have a context-sensitive optimization that scales to programs having up to 1016

contexts. Property 3.14 summarizes this fact.

Property 3.14. Algorithm 2 produces an FSM with at most 2 states per node in T (O)

3.6 From MiniLog to LLVM’s Intermediate Representation

We have implemented the ideas discussed in this section in LLVM, as an extension of the optmiddle-
end optimizer. This implementation follows Algorithms 1 and 2; however, to make it practical, we
have adopted two extensions, which we describe in this section. The first extension allows us to
support context-sensitive optimizations described by partial contexts. The second extension allows
us to support exception handling in functions that have this feature.

Supporting partial contexts. Algorithms 1 and 2 assume that the root of an optimization tree is
the entry point of the program. However, an analysis might discover optimization opportunities
starting in any function. For example, if some function f calls some function д with constant
parameters, and these same values are forwarded from д to h, then h is optimizable every time it is

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:15

reached from f . The path from the main function to f is not relevant in this case. Although we can
represent this optimization in a single Optimization Tree by exhaustively listing all contexts in
which f is called, that is undesirable, since f might be active in an exponential number of contexts.

To benefit from this observation, we have extended our method to handle Optimization Forests

instead of Optimization Trees. An Optimization Forest associates an Optimization Tree with a
collection of root functions. Whenever control flow reaches a root function, context-tracking begins
relative to that function. Instead of having a single global DFA state, we shall have a stack of states.
The state on the top corresponds to the currently active Optimization Tree and context-tracking DFA.
Root functions are modified to push the initial state of their corresponding DFA to the stack upon
invocation. When the function returns, the state is popped, returning to whatever Optimization
Tree was active before (if any). Function transition will always operate on the top of the stack.
In this way, context-tracking overhead only takes place when a root function is in the call stack.
Otherwise, parts of the original program will be executed.

Supporting exception handling. To explain how we track calling contexts using a DFA, we have
used a call to function transition with a sentinel value, −1, to indicate function return. However,
the same approach would not work in a language that supports exceptions. To handle exceptions,
we have adopted a slightly different approach. We save the current state of the DFA in a local
variable at the beginning of every context-sensitive function (i.e. those that update the DFA). Thus,
the call to transition(−1) can be avoided by simply copying back the locally saved state to the
global DFA state. The same can be done to correct the DFA state whenever an exception is being
handled (e.g. in a catch block in C++ or Java). Our actual LLVM implementation processes returns
using this method, since it has also proven profitable in terms of minimizing the overhead involved
in updating the state machine. This modification can work along with Optimization Forests by
inserting a catch-all block in the end of every root function, which ensures the state is popped
even if an exception is thrown.

3.7 Inline DFA Implementation

Algorithm 1 assumes the existence of a function called transition that is responsible for changing
the states of the DFA upon function calls and returning a reference to the implementation that
should be invoked in the current calling context. This incurs the cost of two procedure calls for each
transition the DFA performs. Moreover, based on the implementation of transition described
in Section 3.4, each invocation of this function executes two switch statements: one for checking
which state the DFA is currently at (a global variable), and one for checking which transition should
be made based on the identifier of the current call site (the single parameter passed to transition).

However, it is possible to bring the cost per transition down to a single switch statement instead
of two, and avoid the function calls altogether. To understand how this optimization works, suppose
that we inlined the transition function everywhere where it is called with a parameter different
than −1, i.e. once in all call sites that may trigger a DFA transition. Consider one such call site CS, in
the body of a function f . The second (nested) switch statement in the body of transition checks
which call site we are at. However, since transition is inlined at CS, this check is unnecessary.
Therefore, the innermost switch can be replaced by the body of its łCSž case; thus, yielding a single
switch statement which tests for the DFA state.

Here comes the key observation that makes this approach practical: given that the call site CS is
located in function f , not all states are possible. Rather, only the DFA states in which function f is
active are possibleÐusually a small subset of all states. Thus, other states can be removed from the
switch statement. We are still left with the call to transition(-1). Nevertheless, this call can be
eliminated, because it will always bring the DFA to the state active when the execution reaches

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:16 Gabriel Poesia and Fernando Magno Quintão Pereira

function(a, x,
 print(x);
);

function(b, x,
 call(a, 2*x);
 call(a, 2*x + 1);
);

function(c, x,
 call(b, 2*x);
 call(b, input);
);

call(c, 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

function(ctx_sens_b, x,

 call(transition, 3);

 call(sm_function, 2*x);

 call(transition, -1);

 call(transition, 4);

 call(sm_function, 2*x + 1);

 call(transition, -1);

);

function(b, x,
 def(st, __global_dfa_state);
 ifelse(st == 2, [
 set(__global_dfa_state, 3);
 call(a_0, 2*x);
 set(__global_dfa_state, st);
],
 [call(a, 2*x);]
);

 ifelse(st == 5, [
 set(__global_dfa_state, 7);
 call(a_3, 2*x + 1);
 set(__global_dfa_state, st);
],
 [call(a, 2*x + 1);]
);
);18

(a)

(b)

(c)

Fig. 8. (a-Middle) Program taken from Figure 7. (b-Left) Function b, optimized using the approach seen in
Section 3.3. (c-Right) The same function optimized with the inlined DFA discussed in Section 3.7.

function f . Therefore, in the beginning of f we save the current DFA state in a local variable st.
Then, calls to transition(-1) are replaced by a statement assigning the global state back to the
state saved in st. This inline implementation usually needs more space than its outline counterpart;
however, it avoids the cost of calling transition, and might enable intra-procedural optimizations.

Example 3.15. Figure 8 (c) shows function b from Figure 7 optimized with the inline DFA imple-
mentation described in this section. The applied Optimization Tree is also the one from Figure 7.
Given the contexts shown in Figure 4, we know that if the program is currently at b, there are only
two possible states: S2 and S5. Thus, for each of the two transitions, we only need to check which
state we are at in order to know the next state and the function to be called.

4 EVALUATION

To evaluate our context-sensitive code generation method, we have implemented it in LLVM 10.0.0.
We run experiments on Intel i7-3770 at 3.40GHz, with 16GB of RAM featuring Ubuntu 16.04. We
report results for our core technique augmented with the improvements discussed in Section 3.7.
Our optimization runs as the first pass in LLVM’s Link-Time Optimization (LTO) pipeline; after
every compilation unit has been optimized with clang -O2. We compare it with three baselines:
clang -O25, clang -Os and clang -O2 plus full cloning. In this section, we answer the following
research questions:

RQ1 What is the overhead that our technique adds onto compilation time?
RQ2 What is the overhead that our technique adds onto the size of compiled code?
RQ3 What is the overhead that our approach adds onto the running time of compiled code?
RQ4 How does our approach scale when we change the number of contexts considered?

Context-Sensitive Constant Propagation.We evaluate our techniques over a fully context-sensitive
version of constant propagation. The algorithm propagates constants inside functions and, whenever
a parameter of a call instruction is discovered to be constant, propagation continues in the target

5Results with clang -O3 can be found at Poesia [2017]. They are similar to results with clang -O2, as both apply extensive

function inlining. In contrast, at the -O1 level, inlining is only applied to functions marked as always-inline.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:17

Table 1. Benchmarks in SPEC CPU2017. F. and Insts. are the number of functions and instructions in the
original program, respectively. Opt. C. shows the number of contexts that could be optimized, out of 15,000
samples. This number is also the quantity of clones created by our approach. Opt. N. gives us the number
of nodes in the optimization tree. This number is the quantity of clones created by typical clone-based
specialization. DFA S. shows the number of states in the DFA we use to dynamically dispatch optimizations.

Benchmark F. Insts. Contexts Opt. C. Opt. N. DFA S.

500.perlbench 1,941 434,745 > 10
16 6,426 14,998 15,000

502.gcc 10,405 1,619,027 > 10
16 18 14,994 29,954

505.mcf 27 6,443 166 10 15,000 15,002
508.namd 120 193,944 135 0 0 0
510.parest 3,715 512,550 36 2 2 3
511.povray 1,318 183,329 37 0 0 0
519.lbm 15 2,089 101 7 8 9
520.omnetpp 5,245 264,857 5 0 0 0
523.xalancbmk 10,491 749,843 111 13 21 22
526.blender 34,686 1,847,308 13,808,980,262 7,906 13,076 13,080
531.deepsjeng 86 15,310 124,147,605 12,388 14,857 14,860
538.imagick 988 214,061 > 10

16 11,424 14,998 15,000
541.leela 207 17,355 97 0 0 0
544.nab 76 21,007 94,746 168 14,575 14,577
557.xz 207 24,267 645 38 58 59
999.specrand 6 233 62 0 0 0

function in a context-specific scenario. This informationÐdiscovered staticallyÐis arranged in
an Optimization Tree, which is then passed to our code generator. We do not optimize functions
when the only change that constant propagation enables is to replace call arguments by constants.
Rather, propagation continues in child contexts without the caller being modified. We compare our
optimization against a clone-based context-sensitive code generator. In this baseline, each node
of the Optimization Tree is implemented by a function clone. Every function in the optimization
tree is replicated once per occurrence in the tree. Unoptimized functions are not touched, like in
previous work [Hall 1991; Li et al. 2013]. We have chosen to implement context-sensitive constant
propagation because it is simple and extensive. The goal of this implementation is to measure the
overhead of our state-machines when compared to its version based on full function cloning. Being
a research artifact, we do not expect it to speedup code produced with clang -O2, although, as we
shall discuss in Section 4.3, some speedups could be observed in particular benchmarks.

Benchmarks. We tested our implementation on the 191 benchmarks from the LLVM Test Suite.
The test suite includes benchmarks such as MiBench, Shootout and Polybench. We have augmented
this suite with the integer benchmarks written in C from SPEC CPU2017 [Bucek et al. 2018]; thus,
obtaining 16 large benchmarks such as gcc, blender and imagick. Table 1 shows statistics for
these SPEC CPU2017 benchmarks. Some benchmarks have considerably large code (as gcc, with
10,405 functions). We have also counted the number of static contexts in these programs using a
simple dynamic programming algorithm. This count ignores recursive functions (otherwise, the
number of statically known contexts is theoretically infinite). Some programs have a very large
number of contexts (over 1016 in a few cases).

Context Pruning. To handle such large search spaces, our context-sensitive constant propagation
limits its search to 15,000 contexts. In Section 4.4 we analyze the impact of different cutoffs in our

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:18 Gabriel Poesia and Fernando Magno Quintão Pereira

optimization. Table 1 shows howmany contexts were effectively optimized in each SPEC benchmark,
and the number of nodes in the Optimization Tree that is later passed to code generation methods.
The algorithm starts at the main function, propagating constants as deep as possible in the Context
Call Tree. Once information in a context does not allow any further propagation, it returns and
explores other nodes of the CCT. The algorithm naïvely analyzes the first contexts it reaches
by following calls in the order they appear in the program. In total, this process takes about 4
hours to go over the 209 available programs. This time is mostly spent in the context-sensitive
implementation of constant propagation. Code generation, i.e., construction of clones and the
state machine, takes negligible time. Nevertheless, this simple optimization can yield speedups on
programs from SPEC CPU2006 when comparing to clang -O2.

Indirect Calls. For simplicity, we opted to disregard targets of indirect calls. Therefore, our
implementation does not optimize dynamically invoked functions. In SPEC CPU2017, this specially
affects xlancbmk and omnetpp. Because dynamic dispatch is used very early in the execution of
these benchmarks, their CCT could not be accurately constructed in compile-time. For instance,
omnetpp has 5,245 functions, but gave us only 5 contexts. We emphasize that this shortcoming in
our implementation is not a limitation of our technique. Indirect calls affect every context-sensitive
optimization, and there are techniques to deal with them [Dean et al. 1995b; Grove et al. 1997;
Milanova et al. 2004; Shivers 1988].

4.1 RQ1 – Compilation Time

Table 2 shows how our technique affects the compilation time of different SPEC CPU2017 programs.
Compilation time tends to increase. However, once we limit the number of contexts to 15,000, this
growth does not cause compilation to be impractical. Considering all SPEC CPU2017 benchmarks
(except blender, on which Full Cloning runs out of memory), vanilla clang -O2 takes 15 minutes
running link-time optimizations. clang -Os takes only 7:33 minutes. clang -O2 running with our
inline DFA technique (limited at 15,000 contexts) and optimizations take 3.13x longer than -O2

alone. Full Cloning raises compilation times by 3.40x.
On blender, our approach incidentally yields shorter compilation time than clang -O2 without

it. We observed that, in this case, our DFA contained functions that were aggressively inlined
by clang -O2 during link-time, thus considerably growing the number of functions that were
further optimized. In light of these results, we can answer our first research question positively:
our DFA-based method yields practical compilation times, even for large programs.

4.2 RQ2 – Code Size

Figure 9 (Left) compares the size of binaries produced by clang -O2 when augmented with our
approach, and with full cloning. Out of a universe of 209 programs, our implementation of context-
sensitive constant propagation finds optimization opportunities in 128. Finding such opportunities
is not trivial, because clang -O2 already runs a very extensive intra-procedural implementation
of constant propagation. DFA-based code generation produces smaller binaries in 31 out of these
128 benchmarks. Cloning generates smaller binaries in 97 benchmarks. However, in most cases
in which cloning is at advantage, the difference is very small (less than 10KB). In contrast, our
method avoids very significant size growth when dealing with large benchmarks. For instance,
in the ClamV benchmark, the output binary generated by the DFA-based method is 76MB smaller
than the same binary optimized with traditional cloning. In total, the binaries produced by full
cloning are 2.63 times larger than the binaries that we generate with our state machines. If we
only consider the bytes added to the original binary (i.e. optimized binary size minus binary size
generated by clang -O2), the difference is even larger: while our method adds 33.37MB in total to

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:19

Table 2. Binary sizes (B.) and compilation times (T.) on SPEC CPU2017 for LLVM -O2, LLVM -Os, the Inline
DFA and Full Cloning (FC). Here, compilation time only counts link-time optimizations, when we run our
optimization (compilation times before this are unaffected). On 526.blender, the largest benchmark in the
suite, Full Cloning crashes, running out of memory (OOM) when generating code for the optimized program.

Benchmark B. (O2) T. (O2) B. (Os) T. (Os) B. (DFA) T. (DFA) B. (FC) T. (FC)

500.perlbench 2.76M 01:10 1.85M 00:40 4.99M 47:22 2.67M 62:24
502.gcc 12.44M 08:55 7.74M 03:32 12.48M 09:45 17.40M 19:59
505.mcf 29.58K 00:00 22.73K 00:00 497.86K 01:59 71.22M 112:14
508.namd 735.70K 00:18 514.52K 00:12 735.70K 00:18 735.53K 00:19
510.parest 2.24M 00:58 1.61M 00:40 2.24M 00:58 2.23M 00:59
511.povray 1.48M 00:36 856.97K 00:22 1.48M 00:36 1.48M 00:37
519.lbm 18.58K 00:00 18.58K 00:00 22.70K 00:00 22.50K 00:00
520.omnetpp 2.25M 00:31 1.42M 00:23 1.79M 00:30 1.78M 00:31
523.xalancbmk 5.62M 01:28 3.16M 00:58 4.41M 01:29 4.31M 01:33
526.blender 17.24M 16:21 12.81M 03:07 21.50M 07:02 OOM OOM
531.deepsjeng 94.95K 00:02 63.66K 00:01 3.85M 01:24 6.21M 04:19
538.imagick 1.63M 00:54 1.27M 00:35 4.57M 07:35 3.58M 08:02
541.leela 110.75K 00:01 76.44K 00:01 96.91K 00:01 96.74K 00:02
544.nab 108.95K 00:02 84.38K 00:01 612.76K 01:02 74.64M 32:40
557.xz 158.19K 00:03 116.97K 00:02 170.22K 00:03 153.66K 00:03
997.specrand 10.32K 00:00 10.32K 00:00 10.32K 00:00 14.24K 00:00
999.specrand 12.31K 00:00 10.32K 00:00 10.32K 00:00 14.24K 00:00

all executables, cloning adds 281.94MB in order to implement the same optimization, i.e. it adds
8.5x more bytes.

Cloning also generates binaries that are smaller than our executables in a few cases. For instance,
Figure 2 shows that in SPEC’s imagick, the binary generated by cloning is 22% smaller. We have
manually inspected several of such cases, and found a common pattern. Our naïve optimization
often specializes contexts that are provably unreachable. In the case of cloning, if the compiler
can prove that a function is unreachable, that function will be eliminated, together with all the
calling path that it originates. This shortcoming is not a fundamental limitation of our approach:
it is still possible to integrate it with dead-code eliminationÐsomething that we have not done.
Nevertheless, our technique is still substantially better than cloning in terms of code size. In
Table 2, we observe clang -Os generating binaries that have a (geometric) mean size of 0.71x the
same binaries generated by clang -O2. Using our DFA-based optimization on top of clang -O2,
limiting it at 15,000 contexts, increases binary sizes by 1.79x (geo-mean). Again, Full Cloning has a
significantly larger overhead, increasing binary size by 5.78x.

We find that compilation times and binary sizes are tightly linked. Both the DFA-based approach
and Full Cloning take similar times to run their core algorithms, which all run on linear time on
the size of the optimization tree. However, because Full Cloning introduces more functions, all
other stages of optimization and code generation are heavily impacted, yielding the results we
observe. With these observations, we can answer our research question positively: the DFA-based
implementation of context-sensitive optimizations generates significantly smaller binaries than
Full Cloning.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:20 Gabriel Poesia and Fernando Magno Quintão Pereira

!1.E+07(

0.E+00(

1.E+07(

2.E+07(

3.E+07(

4.E+07(

5.E+07(

6.E+07(

7.E+07(

8.E+07(

0(20(40(60(80(100(120(
0.7$

0.9$

1.1$

1.3$

0$ 20$ 40$ 60$ 80$ 100$ 120$

Applications/ClamAV (-76,443KB)
Benchmarks/misc (-42,221KB)

Fhourstones-3.1 (-36,184KB)

CINT2006/458.sjeng (+2,797KB)
JM/lencod (1,318KB)
Applications/sqlist3 (+1,032KB)

FreeBench/mason (1.25x)
FreeBench/fourinarow (1.25x)

ALAC/decode (1.17x)

TSVC/ControlLoops-flt (0.78x)
TSVC/reductions-dbl (0.83x)
TSVC/ControlLoops-dbl (0.85x)

1.0

S
iz

e
 o

f
e
x
e
c
u

ta
b

le
 (
b

y
te

s
)

S
p

e
e
d

u
p

 (tim
e
-O

R
G

/tim
e
-F

S
M

)

Fig. 9. (Left) Size comparison between our approach and full cloning. Each point is a benchmark. Y-axis
shows the number of bytes in the executable generated by full cloning minus the same binary generated
with our method. The higher the point, the better it is to our approach. (Right) The impact of our context-
sensitive constant propagation on program speed. Each point is a benchmark. Y-axis shows the ratio between
the running time of clang -O2 and our approach (thus, 1.25x means 25% speed-up, and 0.85x means 15%
slowdown). The greater the ratio, the better to our approach.

4.3 RQ3 – Running Time of Compiled Code

The goal of this section is tomeasure the overhead that our state machines add onto highly optimized
executable programs. To this effect, Figure 9 (Left) compares the runtime of the executables produced
by clang -O2 plus either our state machines, or full cloning. Numbers are the arithmetic mean of
five executions. Binaries produced with full cloning show no statistical difference to the binaries
produced with the state machines. In total, programs optimized with the DFA-based method took
1517.4s seconds to run, versus 1515.4s seconds taken by the programs transformed with full cloning.
These numbers are the average of five runs. Full cloning is less than 0.13% faster, and this difference
yields a p-value above 0.05; hence, outside a confidence interval of 95%. In spite of the larger
discrepancies that we can find when looking at individual benchmarks, the experiment lets us
conclude that the runtime overhead of our state-machines and the dynamic dispatch of specialized
code is minimum, when compared to more traditional approaches.
The Impact of State Machines onto Code Produced by clang -O2. Figure 9 (Left) compares
the runtime of code that uses our context-sensitive version of constant propagation, and code that
does not. Both programs have been optimized with clang -O2. Our implementation of constant
propagation is not able to deliver a net gain on top of clang -O2. This result is not surprizing: at this
level, LLVM applies 228 analyses and optimizations onto programs. Some of these optimizations,
namely inlining, already bring forward most of the benefits that constant propagation could provide.
Furthermore, inlining enables very aggressive dead-code elimination, something that our version
of context-sensitive constant propagation does not.

Nevertheless, Figure 9 (Left) shows that our state machines do not add any substantial overhead
onto clang -O2. As with most optimizations, we have observed both speed-ups and slowdowns.
We observed 11 consistent speed-ups of at least 3% with context-sensitive constant propagation
(confidence of 95%), and 13 consistent slowdowns of at least 3%. Impact in running time ranged
from 25% (speed-up) to 15% (slowdown). All 5 slowdowns greater than 10% come from the same
benchmark suite: TSVC, which consists of the same program run with different flags. We have
inspected this benchmark, and found that łthere is a dummy function called in each loop to make
all computations appear requiredž (quoted from a comment in the source code). When using the
DFA-based method, calls to the dummy function, present in every loop, modify the DFA state. If
we apply our optimization without inlining the code of the state machine, e.g., the transition

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:21

function, in the dummy function, then LLVM’s dead code elimination is also able to remove that
function. In this case, we obtain the same positive effects as in full cloning.

In spite of the previous discussion, we have found speedup opportunities with our naïve context-
sensitive constant propagation algorithm. For instance, in the Dhrystone benchmark we could
produce a binary 32x faster than clang -O2. In this case, the combination of constant propagation,
loop unrolling and dead code elimination let the compiler solve much of the computations in the
benchmark statically. We emphasize that the goal of this specific experiment is not to speedup
programs. Rather, we want to demonstrate that our state machines add a small overhead onto
programs.We have chosen constant propagation to perform this demonstration because it is difficult
to conceive any optimization that could be more extensively applied than it. And, as Table 1 shows
in the Contexts column, traditional implementations of clone-based optimizations would be too
expensive to be applied in SPEC programs, for instance.

4.4 RQ4 – Scalability

Figure 10 shows how the size of programs vary once we change the number of contexts considered
when performing context-sensitive constant propagation. The figure contrasts the DFA-based
approach introduced in this paper with full cloning. Each line in Figure 10 represents a single
benchmark. Points along the X-axis are the number of contexts considered. For this experiment, we
have evaluated 5K, 10K, 15K, 20K and 25K contexts. Notice that although the number of contexts
bear important impact on the size of binaries, it does not contribute noticeably to their running
time. We have not been able to measure statistically significant variations in running time within a
90% confidence interval.
Linear growth. Figure 10 lets us draw two conclusions about the implementation of context-
sensitive optimizations via state machines and via full cloning. First, in both cases, the size of the
binary produced grows linearly with the number of contexts considered. This conclusion comes
from a mixed-effects linear regression, where the groups correspond to benchmarks, the random
effect is the benchmark-specific łsize per contextž, and the fixed effect is the number of contexts
optimized. The coefficient of determination (R2), in this case, is 0.97; hence, very close to a perfect
linear behavior.
Lower linear coefficient. Second, Figure 10 makes it clear that the DFA-based approach presents
much better scalability. Thus, although in both approaches the sizes of binaries grow linearly with
the number of contexts considered, full cloning uses a much higher linear coefficient. This fact is
evident from a visual inspection of line slopes presented in both the figures. In some cases, like in
gcc, by going from 5K to 25K contexts, our implementation increases code size by a factor of only
2.72x (794KB to 2.17MB). However, full cloning leads to an increase of 57x (652KB to 37.80MB). This
size explosion is due to the need to provide multiple versions not only of the optimized functions,
but to whole paths in the call graph of the target program. Notice that both techniques: state
machines and full cloning, track exactly the same paths in the program’s call graph. However, in
the case of our technique, paths are recorded via a data-structure, whereas full cloning uses actual
code to record these paths.

4.5 Discussion

This section has contrasted two approaches to implement context-sensitive optimizations. The
first, the idea that we introduce in this paper, uses a combination of state-machine plus dynamic
dispatching of optimized functions. The second approach clones paths within the call graph of
the target program. In terms of code size, this approach is equivalent to unrestricted inlining
of optimizable functions. The experiments in this section show that our state machines do not

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:22 Gabriel Poesia and Fernando Magno Quintão Pereira

445.gobmk

505.mcf_r

403.gcc

0 5K 10K 15K 20K 25K

0B

10M

20M

30M

40M

A
d

d
e
d

 B
in

a
ry

 S
iz

e

Number of Contexts

DFA FC

0 5K 10K 15K 20K 25K

505.mcf_r

403.gcc

445.gobmk

50M

Fig. 10. Number of bytes added to the program’s binary when we vary the number of contexts in the
optimization tree, on the SPEC benchmarks. Each benchmark is a line, with points resulting from limiting
the number of contexts in the optimization tree to 5K, 10K, 15K, 20K and 25K. When constant propagation
cannot find more optimization opportunities even with a larger limit of contexts considered, results collapse
into a single point. On the left, we have the result of applying optimizations with our DFA-based approach,
whereas results for Full Cloning (FC) are shown on the right.

impose extra runtime overhead onto the optimized programs. And, in contrast to the cloning-based
alternative, they lead to binaries that are orders of magnitude smaller.

In small programs, this difference in code size tends to be irrelevant. There are even situations in
which full-cloning allied with extensive-dead code elimination leads to smaller binaries. However,
once we consider large programs, the gap between the two approaches becomes considerable. To
give the reader some perspective on these numbers, we have applied both approaches onto the
compilation of Mozilla’s Firefox version 80.0.16. The whole project has more than 100K functions;
however, most of them are in shared libraries, dynamically linked to the executables. The firefox
executable yields only 922 functions visible at the LLVM LTO level. We find 456 optimizable contexts
in this environment, pruning our optimization tree at 14,949 nodes and 15,144 DFA states. Adding
this state machine to the executable increases its size from 7.2MB to 9.2MB. In contrast, the final
binary produced by cloning has 34MB.

5 RELATED WORK

This work concerns the implementation of context-sensitive optimizations. Even though this is a
well-known topic, being even discussed in general compiler textbooks, we believe that our contri-
bution is unique, when compared against previous art. To the best of our knowledge, there are no

6Build instructions are available at https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/

Compiling_Firefox_With_Clang_On_Linux

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Compiling_Firefox_With_Clang_On_Linux
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Build_Instructions/Compiling_Firefox_With_Clang_On_Linux

Dynamic Dispatch of Context-Sensitive Optimizations 167:23

implementation of fully context-sensitive optimizations; at least, not if we consider optimizations
that can be widely appliedÐas constant propagation, for instance. Nevertheless, mainstream compil-
ers and research artifacts often use context-sensitive information towards program improvement.

5.1 Context-Sensitive Analyses and Optimizations

The programming languages community has spent much effort into making context-sensitive
analyses practical, as we have mentioned in Section 1. Thomas Reps has presented some of the first,
and most important, results in this regard [Reps 1997, 2000]. In particular, Reps has shown that it is
possible to improve interprocedural dataflow analyses by ruling out impossible paths between calls
and returns. Paths that do not encode strings in a context-free language (CFL) should not be taken
into consideration. These results refer to static analyses. Our work, in contrast, is related to the
implementation of context-sensitive optimizationsÐwhich are enabled by those analyses. To this
end, we create a state machine that tracks contexts dynamically. Said machine recognizes a subset
of the context-free languages that Reps introduces. Thus, the undecidability results of Reps [1997]
do not apply to the discussions in this paper.
Complete Context-Sensitive Analyses. State-of-the-practice techniques are able, today, to im-
plement fully context-sensitive static program analyses. Watersheds, in this case, seem to have
been the work of Whaley and Lam [2004], and the work of Zhu and Calman [2004]. They have
shown, independently, that binary decision diagrams (BDD) were able to represent context-sensitive
call-graphs with up to 1014 different paths. Key to that scalability was the ability of BDDs to merge
information common among different call strings. Notice, however, that this kind of approach
treats call strings context-sensitively, but does not effectively clone the heap. Nevertheless, context-
sensitive information can still be used, for instance, whenever it is unique at a given program point,
regardless of the call path reaching that point. For a comprehensive overview on the use of BDDs
to track down calling contexts, we recommend the work of Lhoták and Hendren [2006].
Optimizations discussed in Section 2. Figure 2, Page 5, provides examples of four different ways
to carry out context-sensitive optimizations. As discussed in Section 2, context-sensitive optimiza-
tions have been employed to perform type specialization in generic functions, to disambiguate
pointers statically and to inline the body of function calls. Nevertheless, all these optimizations are
used in limited ways, due to the problem of code-size explosion. In other words, thus far, either the
optimizations are applied onto sites where context-sensitive information is invariant, or they must
be restricted to small programs, or they are restricted to a few levels of the calling context tree.

5.2 Program Specialization via Function Cloning

Function cloning is a well-known way to enable code specialization. Compiler textbooks such as
Kennedy and Allen [2002, pp.594]’s and Grune et al. [2012, pp.325]’s describe this technique. We
recognize three different ways to use function cloning towards the production of specialized code:
static, dynamic and hybrid. These approaches depend on how clones are produced and on how
they are chosen. Under such a classification, the method described in this paper falls on the first
category, as clones are built during compilation time. However, we emphasize that none of the
static techniques that we are aware of is able to deal with specialization in a fully context-sensitive
way as we do: they clone functions only if a given call site has some invariant property, regardless
of the call path that reaches it. In the rest of this section we go over the main techniques.
Fully Static Function Specialization. Static code specialization is the oldest andmostwell-known
technique, among the three categories that we have listed above. The most extensive discussion
about clone-based optimizations that we are aware of can be found in Mary Hall’s PhD disserta-
tion [Hall 1991, Cp.5]. At that time, function cloning had yet to find space in industrial-strength
compilers. In the words of Kennedy and Allen [2002], łThe Convex Applications Compiler [Metzger

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

167:24 Gabriel Poesia and Fernando Magno Quintão Pereira

and Stroud 1993] is the only commercial compiler we know that performs this optimization". Today,
function cloning has more users. For instance, gcc can produce specialized clones of a function,
if in some specific contexts it receives only constants as parameters. This is a restricted version
of Metzger and Stroud’s inter-procedural constant propagation. Cloning is the default choice to
produce specialized versions of functions that use parametric polymorphism. Stucki and Ureche
[2013] have shown that performance improvements of up to 30x are possible when functions are
specialized to particular types. Other examples along similar direction include the work of Dragos
and Odersky [2009], Sallenave and Ducournau [2012] and Petrashko et al. [2016].
Fully Dynamic Function Specialization. All the code specialization techniques seen previously
are static: information is collected statically by the compiler, and then used to produce customized
versions of functions. Dynamic and hybrid code specialization techniques also abound in the
literature. Fully dynamic approaches are typical among just-in-time compilers [Gal et al. 2009;
Hackett and Guo 2012; Hölzle et al. 1991; Santos et al. 2013]. For instance, Santos et al. [2013] and
Lima et al. [2020] have proposed to generate specialized routines based on the runtime value of the
arguments passed to JavaScript functions. These values can be easily inspected, because code is
being generated while the program executes. This approach leads to similar results as our constant
propagation, although it is done on-the-fly.
Hybrid Function Specialization. Hybrid specialization combines static and dynamic informa-
tion to customize program parts. For instance, Samadi et al. [2012] and Tian et al. [2011] generate
programs containing distinct routines to handle different kinds of inputs. Another example of
hybrid specialization based on cloning concerns the line of work known as Runtime Pointer Disam-

biguation [Alves et al. 2015; Rus et al. 2002; Sperle Campos et al. 2016]. This technique consists in
producing runtime checks that, if satisfied, are enough to prove the absence of aliasing between
pointers. Such guards might lead to specialized versions of functions, which have been compiled
under the assumption that arguments cannot alias.

5.3 Context Sensitive Optimizations in JIT-Compilers

Just-in-time compilers are able to carry out context-sensitive optimizations, as a consequence of
compiling code while said code runs. A visible effect of these optimizations are specializations,
which can be based on single values [Lima et al. 2020; Santos et al. 2013], ranges of values [Sol et al.
2011] or types of values [Gal et al. 2009; Inoue et al. 2011]. Some JIT compilers limit the number of
versions of each specialized function, like two in the case of Santos et al. [2013] or four as described
by Lima et al. [2020]. Other compilers, notably trace-based, might keep a copy of binary code per
calling context. In the words of Inoue et al. [2011], łthe same method called from many different

places may appear in many traces because it achieves an effect equivalent to method inlining". The
work described in this paper has been proposed, implemented and evaluated on a static compiler.
Nevertheless, we believe that the combination of state machines and dynamic dispatch can also
be used to mitigate code size explosion in JIT-compilers, specially on method-based systems that
resort to extensive inlining, like the one used in the IBM J9 VM [Grcevski et al. 2004].

5.4 Context Numbering

Previous work have discussed the possibility of assigning a different identifier, e.g., a number, to
every context that could exist during the execution of a program. Such identifiers support, for
instance, more precise program profiling and event logging. The state-of-the-art approach in this
regard is the work of Sumner et al. [2010, 2012]. Their numbering approach is inspired by Ball and
Larus [1996]’s path numbering algorithm. There is a beautiful correlation between Sumner et al.’s
work and ours: we could use their technique to select the right version of an optimized function
to dispatch. To carry out this approach, two actions are in order: (i) instrument the program to

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

Dynamic Dispatch of Context-Sensitive Optimizations 167:25

update the context ID at every function call; and (ii) use a table to associate context IDs with
functions. To work correctly in our setting, Sumner et al.’s original implementation would require
a small adaptation, for it is restricted to calling context trees (CCT) that can be numbered with
32-bit identifiers. Nevertheless, this is not the approach that we use in this paper to chose the right
function to dispatch. Instead of assigning unique IDs to paths in the program’s CCT, we assign
unique IDs to the children of nodes in that tree. Because the number of children of CCT nodes is
small, our universe of IDs can be much smaller than Sumner et al.’s. Moreover, instead of relying
on a table, we use an automaton to keep track of the current path in the CCT.
In addition to Sumner et al.’s technique, which is exact, the programming languages literature

contains probabilistic techniques to number calling contexts [Bond et al. 2010; Bond and McKinley
2007; Huang and Bond 2013]. Probabilistic numbering has been shown to be useful, for instance, to
support sampling profilers. Given the probabilistic nature of the technique, there exists some chance
that different contexts be assigned the same number. Therefore, in contrast to Sumner et al.’s or our
approach, probabilistic numbering, if used to enable code specialization, would require some way
to detect and resolve collisions. All this said, we emphasize that Sumner et al.’s exact technique
or the probabilistic approaches have never been used as a means to implement context sensitive
optimizationsÐthe goal of this paper. Rather, they propose ways to assign unique IDs to calling
contexts. In contrast, our key contribution is not a methodology to identify contexts at runtime,
but rather the insight of combining such strategy with the dynamic dispatch of specialized code.

6 CONCLUSION

In this paper, we presented a method for implementing context-sensitive optimizations using
dynamic dispatch. Traditionally, context tracking had been accomplished by copying code, either
through function cloning or inlining. By tracking contexts at running time, with the aid of a state
machine, we were able to generate less code in order to implement the same optimizations. Our
method is optimization-agnostic, since any context-sensitive optimization can be described by
an Optimization TreeÐa data structure we introduce. This means that our work complements
recent efforts from the community to create scalable context-sensitive analyses and optimizations.
We implemented our ideas in LLVM, combining them with a simple context-sensitive constant
propagation. Experimental results showed that the overhead introduced by the state machine that
tracks calling contexts is negligible, since the performance of the code generated by our method
was in practice equivalent to that obtained with traditional function cloning. However, we were
able to generate smaller binaries than what traditional function specialization produces, due to the
ability to avoid cloning functions which were not optimized. Finally, the fact that we were able
to observe speed-ups in large real-world programs when comparing to clang -O2 suggests that
context-sensitive optimizations remain largely unexplored by industrial compilers.

Software. Our implementation is publicly available at https://github.com/gpoesia/eos.

ACKNOWLEDGMENTS

We thank Breno Guimarães for helping with the implementation of inter-procedural constant
propagation early on in this project, and the anonymous reviewers for their helpful feedback, which
greatly improved our evaluation. Fernando Pereira is sponsored by CNPq (Grant 406377/2018-9)
and FAPEMIG (Grant PPM-00193-16). This project was developed while Gabriel Poesia was a master
student in the Graduate Computer Science Program of UFMG. During that time, he was sponsored
by a scholarship from Google Research in Latin America.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

https://github.com/gpoesia/eos

167:26 Gabriel Poesia and Fernando Magno Quintão Pereira

REFERENCES

Péricles Alves, Fabian Gruber, Johannes Doerfert, Alexandros Lamprineas, Tobias Grosser, Fabrice Rastello, and Fernando

Magno Quintão Pereira. 2015. Runtime Pointer Disambiguation. In OOPSLA. ACM, New York, NY, USA, 589ś606.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint

Analysis for Android Apps. In PLDI. ACM, New York, NY, USA, 259ś269.

Giorgio Ausiello, Camil Demetrescu, Irene Finocchi, and Donatella Firmani. 2012. k-Calling Context Profiling. In OOPSLA.

ACM, New York, NY, USA, 867ś878.

Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In MICRO. IEEE Computer Society, USA, 46ś57.

Michael D. Bond, Graham Z. Baker, and Samuel Z. Guyer. 2010. Breadcrumbs: Efficient Context Sensitivity for Dynamic

Bug Detection Analyses. In PLDI. ACM, New York, NY, USA, 13ś24.

Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic Calling Context. In OOPSLA. ACM, New York, NY, USA,

97ś112.

Matt Brown and Jens Palsberg. 2017. Jones-optimal Partial Evaluation by Specialization-safe Normalization. Proc. ACM

Program. Lang. 2, POPL (Dec. 2017), 14:1ś14:28.

James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017: Next-Generation Compute Benchmark. In

ICPE. Association for Computing Machinery, New York, NY, USA, 41ś42. https://doi.org/10.1145/3185768.3185771

Keith D Cooper, Mary W Hall, and Ken Kennedy. 1993. A Methodology for Procedure Cloning. Comput. Lang. 19, 2 (1993),

105ś117.

Dibyendu Das. 2003. Function inlining versus function cloning. ACM SIGPLAN Notices 38, 6 (2003), 23ś29.

Jeffrey Dean, Craig Chambers, and David Grove. 1995a. Selective Specialization for Object-Oriented Languages. In PLDI.

ACM, New York, NY, USA, 93ś102. https://doi.org/10.1145/207110.207119

Jeffrey Dean, David Grove, and Craig Chambers. 1995b. Optimization of Object-Oriented Programs Using Static Class

Hierarchy Analysis. In ECOOP. Springer-Verlag, London, UK, UK, 77ś101.

Iulian Dragos and Martin Odersky. 2009. Compiling Generics Through User-directed Type Specialization. In ICOOOLPS.

ACM, New York, NY, USA, 42ś47.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-sensitive Interprocedural Points-to Analysis in the

Presence of Function Pointers. In PLDI. ACM, New York, NY, USA, 242ś256.

Manuel Fähndrich, Jakob Rehof, and Manuvir Das. 2000. Scalable Context-sensitive Flow Analysis Using Instantiation

Constraints. In PLDI. ACM, New York, NY, USA, 253ś263.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-based Detection of Android Malware

Through Static Analysis. In FSE. ACM, New York, NY, USA, 576ś587.

Olivier Fluckiger, Guido Chari, Ming-Ho Yee, Jan Jecmen, Jakob Hain, and Jan Vitek. 2020. Contextual Dispatch for Function

Specialization. Proc. ACM Program. Lang. 4, OOPSLA, Article 1 (2020), 36 pages.

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan,

Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,

Mason Chang, and Michael Franz. 2009. Trace-based Just-in-time Type Specialization for Dynamic Languages. In PLDI.

ACM, New York, NY, USA, 465ś478.

Rakesh Ghiya and Laurie J. Hendren. 1996. Is It a Tree, a DAG, or a Cyclic Graph? A Shape Analysis for Heap-directed

Pointers in C. In POPL. ACM, New York, NY, USA, 1ś15.

Nikola Grcevski, Allan Kielstra, Kevin Stoodley, Mark Stoodley, and Vijay Sundaresan. 2004. JavaTM Just-in-Time Compiler

and Virtual Machine Improvements for Server and Middleware Applications. In VM. USENIX Association, USA, 12.

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call Graph Construction in Object-Oriented Languages.

In OOPSLA. ACM, New York, NY, USA, 108ś124. https://doi.org/10.1145/263698.264352

Dick Grune, Kees van Reeuwijk, Henri E. Baland Ceriel J. H. Jacobs, and Koen Langendoen. 2012. Modern Compiler Design

(2nd ed.). Springer, London, UK, UK.

Brian Hackett and Shu-yu Guo. 2012. Fast and Precise Hybrid Type Inference for JavaScript. In PLDI. ACM, New York, NY,

USA, 239ś250.

Mary Wolcott Hall. 1991. Managing interprocedural optimization. Ph.D. Dissertation. Rice University, Houston, TX, USA.

UMI Order No. GAX91-36029.

Michael Hind, Michael Burke, Paul Carini, and Jong-Deok Choi. 1999. Interprocedural Pointer Alias Analysis. ACM Trans.

Program. Lang. Syst. 21, 4 (1999), 848ś894.

Urs Hölzle, Craig Chambers, and David Ungar. 1991. Optimizing Dynamically-Typed Object-Oriented Languages With

Polymorphic Inline Caches. In ECOOP. Springer-Verlag, London, UK, UK, 21ś38.

Jipeng Huang and Michael D. Bond. 2013. Efficient Context Sensitivity for Dynamic Analyses via Calling Context Uptrees

and Customized Memory Management. In OOPSLA. ACM, New York, NY, USA, 53ś72.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/207110.207119
https://doi.org/10.1145/263698.264352

Dynamic Dispatch of Context-Sensitive Optimizations 167:27

Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu, and Toshio Nakatani. 2011. A Trace-Based Java JIT Compiler Retrofitted

from a Method-Based Compiler. In CGO. IEEE Computer Society, USA, 246ś256.

Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-Driven Context-Sensitivity for Points-to Analysis.

Proc. ACM Program. Lang. 1, OOPSLA, Article 100 (2017), 28 pages. https://doi.org/10.1145/3133924

Ken Kennedy and John R. Allen. 2002. Optimizing compilers for modern architectures: a dependence-based approach. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. 2009. Data Flow Analysis: Theory and Practice (1st ed.). CRC Press,

Inc., Boca Raton, FL, USA.

Anton Korobeynikov. 2007. Improving Switch Lowering for the LLVM Compiler System. In SYRCoSE. RAS, Innopolis, Russia,

A.IśA.V.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In CGO. IEEE, Washington DC, 75ś88.

Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making Context-sensitive Points-to Analysis with Heap Cloning

Practical for the Real World. In PLDI. ACM, New York, NY, USA, 278ś289.

David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter Mössenböck. 2018.

Dominance-based Duplication Simulation (DBDS): Code Duplication to Enable Compiler Optimizations. In CGO. ACM,

New York, NY, USA, 126ś137.

Ondřej Lhoták and Laurie Hendren. 2006. Context-Sensitive Points-to Analysis: Is It Worth It?. In CC. Springer, Berlin,

Heidelberg, 47ś64.

Lian Li, Cristina Cifuentes, and Nathan Keynes. 2013. Precise and Scalable Context-sensitive Pointer Analysis via Value

Flow Graph. In ISMM. ACM, New York, NY, USA, 85ś96.

Yue Li, Tian Tan, Anders Moller, and Yannis Smaragdakis. 2020. A Principled Approach to Selective Context Sensitivityfor

Pointer Analysis. TOPLAS To-Appear, 1 (2020), 1ś40.

Caio Lima, Junio Cezar R. da Silva, Guilherme V. Leobas, Erven Rohou, and Fernando Magno Quintão Pereira. 2020. Guided

just-in-time specialization. Sci. Comput. Program. 185, Article 2 (2020), 39 pages.

Robert Metzger and Sean Stroud. 1993. Interprocedural constant propagation: an empirical study. ACM Lett. Program. Lang.

Syst. 2, 1-4 (1993), 213ś232.

Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolving and Exploiting the k-CFA Paradox: Illuminating

Functional vs. Object-oriented Program Analysis. In PLDI. ACM, New York, NY, USA, 305ś315.

Ana Milanova. 2007. Light Context-sensitive Points-to Analysis for Java. In PASTE. ACM, New York, NY, USA, 25ś30.

Ana Milanova, Wei Huang, and Yao Dong. 2014. CFL-reachability and Context-sensitive Integrity Types. In PPPJ. ACM,

New York, NY, USA, 99ś109.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2004. Precise Call Graphs for C Programs with Function Pointers.

Automated Software Engg. 11, 1 (2004), 7ś26.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer-Verlag New York,

Inc., Secaucus, NJ, USA.

Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided by

Impact Pre-analysis. In PLDI. ACM, New York, NY, USA, 475ś484.

Dmitry Petrashko, Vlad Ureche, Ondřej Lhoták, and Martin Odersky. 2016. Call Graphs for Languages with Parametric

Polymorphism. In OOPSLA. ACM, New York, NY, USA, 394ś409.

Gabriel Poesia. 2017. Dispatch of Context-Sensitive Optimizations. Master’s thesis. Federal University of Minas Gerais.

Gabriel Poesia, Breno Guimarães, Fabrício Ferracioli, and Fernando Magno Quintão Pereira. 2017. Static Placement of

Computation on Heterogeneous Devices. Proc. ACM Program. Lang. 1, OOPSLA (Oct. 2017), 50:1ś50:28.

Thomas Reps. 1997. Program Analysis via Graph Reachability. In ILPS. MIT Press, Cambridge, MA, USA, 5ś19.

Thomas Reps. 2000. Undecidability of Context-sensitive Data-dependence Analysis. TOPLAS 22, 1 (Jan. 2000), 162ś186.

Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. 2002. Hybrid Analysis: Static & Dynamic Memory Reference

Analysis. In ICS. ACM, New York, NY, USA, 274ś284.

Olivier Sallenave and Roland Ducournau. 2012. Lightweight Generics in Embedded Systems Through Static Analysis. In

LCTES. ACM, New York, NY, USA, 11ś20.

Mehrzad Samadi, Amir Hormati, Mojtaba Mehrara, Janghaeng Lee, and Scott Mahlke. 2012. Adaptive Input-aware Compila-

tion for Graphics Engines. In PLDI. ACM, New York, NY, USA, 13ś22.

Henrique Nazare Santos, Pericles Alves, Igor Costa, and Fernando Magno Quintao Pereira. 2013. Just-in-time Value

Specialization. In CGO. IEEE Computer Society, Washington, DC, USA, 1ś11. https://doi.org/10.1109/CGO.2013.6495006

O. Shivers. 1988. Control Flow Analysis in Scheme. In PLDI. ACM, New York, NY, USA, 164ś174.

Rodrigo Sol, Christophe Guillon, Fernando Magno Quintão Pereira, and Mariza Andrade da Silva Bigonha. 2011. Dynamic

Elimination of Overflow Tests in a Trace Compiler. In CC. Springer-Verlag, London, UK, UK, 2ś21. https://doi.org/10.

1007/978-3-642-19861-8_2

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

https://doi.org/10.1145/3133924
https://doi.org/10.1109/CGO.2013.6495006
https://doi.org/10.1007/978-3-642-19861-8_2
https://doi.org/10.1007/978-3-642-19861-8_2

167:28 Gabriel Poesia and Fernando Magno Quintão Pereira

Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-sensitive data-flow analysis using synchronized

Pushdown systems. Proc. ACM Program. Lang. 3, POPL (2019), 48:1ś48:29. https://doi.org/10.1145/3290361

Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and

Context-Sensitive Pointer Analysis for Java. In ECOOP. Springer, London, UK, UK, 22:1ś22:26. https://doi.org/10.4230/

LIPIcs.ECOOP.2016.22

Victor Hugo Sperle Campos, Péricles Rafael Alves, Henrique Nazaré Santos, and Fernando Magno Quintão Pereira. 2016.

Restrictification of Function Arguments. In CC. ACM, New York, NY, USA, 163ś173.

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based Context-sensitive Points-to Analysis for Java. In PLDI. ACM,

New York, NY, USA, 387ś400.

Lukas Stadler, Adam Welc, Christian Humer, and Mick Jordan. 2016. Optimizing R Language Execution via Aggressive

Speculation. In DLS. ACM, New York, NY, USA, 84ś95. https://doi.org/10.1145/2989225.2989236

Nicolas Stucki and Vlad Ureche. 2013. Bridging Islands of Specialized Code Using Macros and Reified Types. In SCALA.

ACM, New York, NY, USA, 10:1ś10:4.

William N. Sumner, Yunhui Zheng, Dasarath Weeratunge, and Xiangyu Zhang. 2010. Precise Calling Context Encoding. In

ICSE. ACM, New York, NY, USA, 525ś534. https://doi.org/10.1145/1806799.1806875

William N. Sumner, Yunhui Zheng, Dasarath Weeratunge, and Xiangyu Zhang. 2012. Precise Calling Context Encoding.

IEEE Trans. Software Eng. 38, 5 (2012), 1160ś1177. https://doi.org/10.1109/TSE.2011.70

Manas Thakur and V. Krishna Nandivada. 2019. Compare Less, Defer More: Scaling Value-Contexts Based Whole-Program

Heap Analyses. In Compiler Construction. ACM, New York, NY, USA, 135ś146.

Manas Thakur and V. Krishna Nandivada. 2020. Mix Your Contexts Well: Opportunities Unleashed by Recent Advances in

Scaling Context-Sensitivity. In Compiler Construction. ACM, New York, NY, USA, 27ś38. https://doi.org/10.1145/3377555.

3377902

Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. SIGPLAN Not. 52, 6 (2017), 263ś277.

https://doi.org/10.1145/3140587.3062359

Kai Tian, Eddy Zhang, and Xipeng Shen. 2011. A Step Towards Transparent Integration of Input-consciousness into Dynamic

Program Optimizations. In OOPSLA. ACM, New York, NY, USA, 445ś462.

Vlad Vergu and Eelco Visser. 2018. Specializing a Meta-Interpreter: JIT Compilation of Dynsem Specifications on the Graal

VM. In ManLang. ACM, New York, NY, USA, 1ś14. https://doi.org/10.1145/3237009.3237018

Haichuan Wang, Peng Wu, and David Padua. 2014. Optimizing R VM: Allocation Removal and Path Length Reduction via

Interpreter-level Specialization. In CGO. ACM, New York, NY, USA, 295:295ś295:305.

Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for JavaScript. In ECOOP. Springer, London, UK,

UK, 712ś734.

John Whaley and Monica S. Lam. 2004. Cloning-based Context-sensitive Pointer Alias Analysis Using Binary Decision

Diagrams. In PLDI. ACM, New York, NY, USA, 131ś144.

Robert P. Wilson and Monica S. Lam. 1995. Efficient Context-sensitive Pointer Analysis for C Programs. In PLDI. ACM, New

York, NY, USA, 1ś12.

Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing Zhang. 2010. Level by Level: Making Flow- and

Context-Sensitive Pointer Analysis Scalable for Millions of Lines of Code. In CGO. ACM, New York, NY, USA, 218ś229.

https://doi.org/10.1145/1772954.1772985

Jianwen Zhu and Silvian Calman. 2004. Symbolic Pointer Analysis Revisited. In PLDI. ACM, New York, NY, USA, 145ś157.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 167. Publication date: November 2020.

https://doi.org/10.1145/3290361
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/2989225.2989236
https://doi.org/10.1145/1806799.1806875
https://doi.org/10.1109/TSE.2011.70
https://doi.org/10.1145/3377555.3377902
https://doi.org/10.1145/3377555.3377902
https://doi.org/10.1145/3140587.3062359
https://doi.org/10.1145/3237009.3237018
https://doi.org/10.1145/1772954.1772985

	Abstract
	1 Introduction
	2 Overview
	2.1 The Challenge of Implementing Context-Sensitive Optimizations
	2.2 State Machines to the Rescue

	3 Formal Specification
	3.1 MiniLog: core Syntax
	3.2 Optimization Trees
	3.3 Code Transformation
	3.4 Construction of the Finite State Machine
	3.5 Properties
	3.6 From MiniLog to LLVM's Intermediate Representation
	3.7 Inline DFA Implementation

	4 Evaluation
	4.1 RQ1 – Compilation Time
	4.2 RQ2 – Code Size
	4.3 RQ3 – Running Time of Compiled Code
	4.4 RQ4 – Scalability
	4.5 Discussion

	5 Related Work
	5.1 Context-Sensitive Analyses and Optimizations
	5.2 Program Specialization via Function Cloning
	5.3 Context Sensitive Optimizations in JIT-Compilers
	5.4 Context Numbering

	6 Conclusion
	References

