
Left to the Reader: Abstracting Solutions in Mathematical Reasoning
Gabriel Poesia, Noah D. Goodman
{poesia,ngoodman}@stanford.edu

Stanford University

Abstract

Formal mathematical reasoning is unique in its precision: any
valid conclusion can be justified by a sequence of base axioms.
But human-written proofs or solutions rarely operate at that
level. Instead, obvious steps are skipped to provide a simple,
lucid argument. This is especially important in an educational
setting, where too many details in an example solution, or too
few, can confuse a student. What are the key steps for humans
in a given formal solution? We investigate several computa-
tional hypotheses in the context of equation solving. Specifi-
cally, we take a reinforcement learning agent that solves equa-
tions using low-level axioms, and propose a series of methods
for abstracting its solutions by selecting key steps. We con-
sider methods based on the semantic distance between subse-
quent steps, based on the steps with the highest uncertainty for
the agent, and based on transitions between latent “high-level
skills” learned from a large number of agent-produced solu-
tions. In a human evaluation we find that skill-base simplifi-
cations were judged most useful. These results suggest new
directions for understanding human mathematical reasoning.
Keywords: mathematical reasoning; reinforcement learning;
skill discovery; abstraction

What makes a good argument? In essence, an argument
must justify the conclusion, given acceptance of the premises.
But this seemingly simple criterion turns out to be challeng-
ing to assess: a rich body of theory, dating back to Aristotle
(Aristotle, 2018; Weston, 2018; Bencivenga, 1979), has at-
tempted to characterize good arguments as well as to iden-
tify common fallacies and pitfalls. Many intricacies stem
from disagreements on what premises are valid and what in-
ferences can be made. However, even among equally valid
arguments some seem better than others.

In formal mathematical reasoning, for instance, all
premises and rules of inference can be precisely stated, and
the correctness of proofs can even be mechanically verified
by computers. However, human mathematical reasoning is
rarely formal: even mathematics researchers do not write
down full arguments in a formal fashion. Indeed, a formal
proof of a mathematical statement is often more than 10 times
longer than a corresponding human proof1. The reason for
this difference lies in the omission or simplification of many
concrete details, which we call abstraction: human-written
arguments might only loosely mention how axioms or theo-
rems are being applied, and many steps are often left implicit.
These omissions are sometimes stated in the text: interme-
diate steps deemed trivial or unimportant are, often frustrat-
ingly, “left to the reader”.

Abstraction is necessary for the human practice of math-
ematics. As even Bourbaki, known for a rigorous style of
mathematical presentation, concedes:

1This is the so-called de Bruijn factor (De Bruijn, 1994), used to
assess the conciseness of computer theorem proving languages.

Figure 1: Human solutions for mathematical problems, such
as linear equations, are typically much shorter and take more
abstract steps than an axiomatic, machine-generated solution.
The computational methods we propose attempt to under-
stand and bridge this abstraction gap.

“The tiniest proof at the beginning of the Theory of Sets
would already require several hundreds of signs for its
complete formalization. [F]ormalized mathematics can-
not in practice be written down in full”. (Bourbaki,
2004)

Thus, in practice, only the most important steps in a proof
are written down, for the purpose of conveying to the reader
why a given mathematical claim holds. This elicits a natu-
ral question: what makes some steps the “most important” in
a mathematical derivation? Can we determine them compu-
tationally, and gain insight into the cognitive process behind
this choice?

The answers to these questions have practical implications
for mathematics education. When showing worked examples
to a student, providing every axiomatic step would be com-
pletely overwhelming. On the other hand leaving out crucial
steps would leave the example equally opaque. Automated
tutoring systems (Ritter, Anderson, Koedinger, & Corbett,
2007; Crow, Luxton-Reilly, & Wuensche, 2018), that aim
to help students learn partly by generating examples, would
thus benefit from an algorithmic approach to simplifying ar-
guments to their clearest form.

In this paper, we take initial steps toward this goal. We
draw from recent work in machine learning models for math-
ematical reasoning, which provides us with tools to find ex-
haustive step-by-step solutions to mathematical problems. In

particular, the ConPoLe model (Poesia, Dong, & Goodman,
2021) has been shown to learn to solve problems in a set of
Common Core educational mathematical domains, such as
linear equations and fraction simplification. Given a prob-
lem, the trained ConPoLe solver constructs a formal, step-by-
step derivation of the solution by applying low-level domain
axioms (e.g., commutativity, distributivity, or evaluation of
operations with constants). Moreover, it constructs semantic
representations of each of these steps, in the form of embed-
ding vectors for each step.

Since ConPoLe operates at the axiomatic level, a solution
to even a simple equation can span dozens of steps. Figure 1
shows one example, where the generated solution annotates
each step with the domain axiom being invoked (axiom pa-
rameters were omitted for brevity). These solutions do not
naturally resemble human solutions to the same problems,
which tend to be significantly shorter, taking more abstract
steps. How can we computationally characterize and close
this gap?

We evaluate several alternative approaches to this problem.
We start from a set of complete, axiomatic, solutions, and
produce simplified solutions by taking a subset of the orig-
inal steps, based on alternative notions of step importance.
Specifically, we evaluate (i) selecting solution steps that make
the largest changes to the equations (as measured by Con-
PoLe’s representations), (ii) selecting solution steps that are
the least predictable (as measured by ConPoLe’s step uncer-
tainty), and (iii) selecting solution steps at the boundaries be-
tween latent higher-level “skills” (recovered by an unsuper-
vised skill-discovery method). We compare a simplified so-
lution to a control alternative that chooses (a matched num-
ber of) random steps from the original solution. We find that
human participants prefer the skill-based segmentation most
strongly, suggesting that considering hierarchy and strategy
is important to constructing human-like solutions. This re-
sult indicates that artificially-generated solutions can be prac-
tically useful for education, and theoretically useful to under-
stand human mathematical abstractions.

Domain and Solver
We take the Common Core Equations environment and the
ConPoLe model from Poesia et al., 2021. This environment
can generate random linear equations from syntactic tem-
plates taken from the Cognitive Tutor Algebra dataset (Ritter
et al., 2007). Given an equation, the environment can then
enumerate allowed actions and the resulting equation of ap-
plying them, using a set of primitive mathematical axioms
(such as commutativity of addition and multiplication, or
adding a constant to both sides of the equation).

ConPoLe was trained to find solutions in this environment:
starting at an equation s, its learned policy π defines a prob-
ability distribution π(st+1|st) over the set of next states A(st)
allowed by the environment; choosing an action leads to a
new state. The solution is complete when the environment
detects that a solution has been found (i.e., the equation has

the form “x = c” for a constant c).
The ConPoLe policy is defined by taking small steps in a

learned state representation space, φ(s) ∈ R512:

π(st+1|st) ∝ φ(st)
⊤ ·Mθ ·φ(st+1)

We note that because φ is trained so that this small-step policy
can find solutions to equations, distance in this embedding is
a good proxy for “conceptual distance” between equations
(see Poesia et al. (2021) for more discussion).

Abstracting solutions
In this paper we consider abstraction by simplifying solu-
tions: keeping only “key” steps and skipping the rest. How
can we computationally define the key steps in a mathemat-
ical solution? We consider three possible answers, based on
conceptual distance, uncertainty, and high-level skills. Each
answer leads to a method for simplifying solutions.

Using distance
One hypothesis is that a step’s importance to the reader
will depend on how much it changes the state of the solu-
tion. For example, in an equation such as 2x = (10+ x)− x,
we can use associativity on the right hand side to arrive at
2x = 10+(x− x). Though this moves toward the solution,
the equations before and after this step look rather similar.
For the next step, apply the property that subtracting anything
from itself yields 0, to obtain 2x = 10+0. This change is in-
tuitively larger than the previous, both in form and meaning.
Our distance-based simplification methods keep the interme-
diate steps right immediately following the largest changes to
the equation.

For this use, the measure of “change” should relate to states
becoming closer to the solution. Purely syntactic metrics fail
to capture this notion. For example, the edit distance from “x
+ 1 = 2” to both “(x + 1) - 1 = (2 - 1)” and “(x + 1) - 2 =
(2 - 2)“ is the same, but only the first step moves towards a
solution. Thus, we use the Euclidean distance between state
representations computed by ConPoLe. Precisely, if st and
st+1 are two consecutive steps in a solution, we define their
distance as d(st ,st+1) = ||φ(st)−φ(st+1)||2.

We tested two methods that simplify a solution based on
distances:

Distance: Keep only the intermediate steps st such that
d(st−1,st)≥ ∆, for a fixed hyper-parameter ∆ ≥ 0.

NDistance: First, to normalize distances, compute the
largest distance between consecutive steps in the solution:
∆max = maxt {d(st ,st−1)}. Then, keep only the intermedi-
ate steps st such that d(st−1,st)∆max ≥ ρ ·∆max, for a fixed
hyper-parameter ρ ∈ [0,1].

Using ∆ = 0 or ρ = 0 keeps all intermediate steps and pro-
duces the most detailed solution possible; conversely, ρ = 1
or ∆ = ∞ removes all intermediate steps. Intermediate values
allow tuning conciseness. Note that the initial equation and
the final state are always part of the solution; all methods we
describe only filter intermediate states.

Using the solver’s uncertainty
Another possible strategy for defining “key steps” in a solu-
tion is to base the decision on uncertainty about the next step.
Intuitively, the more “obvious” it is what the next step should
be, the less important it is to include in the solution. This
leads to a simplification method that removes steps to which
the ConPoLe solver assigns a very high probability:

Uncertainty: Keep only the intermediate steps st such that
π(st |st−1)< ρ, for a fixed hyper-parameter ρ ∈ [0,1].

Again, with ρ = 0, all intermediate steps are discarded;
with ρ = 1, all are kept. In between, we find varying ab-
straction levels.

Using transitions between high-level skills
Uncertainty-based filtering selects transitions between con-
secutive steps that are the least predictable, according to the
solution model. An alternative hypothesis is that key transi-
tions are between more abstract “skills”, that are themselves
realized through a sequence of lower-level axioms. For ex-
ample, in the equation 2x = (15+ 4)+ (36+ 27), one might
want to first “simplify the right-hand side”, and after that “iso-
late x”. We can carry out each of these high-level operations
through more than one path using the basic axioms. Thus, the
solution is unpredictable in the immediate next step, but we’d
predict with high confidence to eventually arrive at 2x = c
(for some c) after a few steps. Thus, long-range predictability
does not imply step-wise predictability. This suggests that to
simplify a long solution, we should infer these latent high-
level actions—skills—and select only the states that immedi-
ately follow transitions between skills.

Inferring transitions between high-level skills (also called
“options,” Kipf et al. (2019); Barreto et al. (2019)) is a prob-
lem that has received significant attention from the Reinforce-
ment Learning community in recent years. Various methods
have been proposed that assume different levels of supervi-
sion. We use CompILE (Kipf et al., 2019), which requires
a set of solutions but no other supervision. Given a data set
of ConPoLe solutions, CompILE fits a latent variable model
that jointly (i) partitions solutions into sub-segments and (ii)
assigns a high-level skill label in each segment.

CompILE is trained by optimizing a variational approxi-
mation to the log-likelihood. Given the dataset of solutions
D = {s1, . . . ,sN}, where each solution si is a sequence of
state/action pairs si,1, . . . ,si,K , CompILE fits pθ to maximize
the likelihood of D:

θ
∗ = max

θ

logL(D|θ) := Es∈D pθ(s)

The likelihood of a given solution pθ(s) is defined in terms of
the boundaries between skill segments, the latent skill applied
in each segment, and the likelihood attributed by each skill’s
model to the state/action sequence inside each segment. If bi
is the position of the i-th segment boundary, and zi is the dis-
crete latent skill assigned to the i-th segment, then CompILE
defines the likelihood of θ by marginalizing over b and z:

Figure 2: Average distance between simplified solutions for
each pair of simplification methods, as measured by (a) Jac-
card Distance and (b) the Boundary Mover Distance (an adap-
tation of string edit distance). In both, all methods have sig-
nificant disagreements; the largest similarity being between
the two distance-based methods (Distance and NDistance).

pθ(s) = ∑
bi

∑
zi

pθ(s|bi,zi)p(bi|bi−1)p(zi)

Where p(bi|bi−1) is a Poisson prior over where skill bound-
aries are placed, and p(zi) is a uniform prior over what skills
are applied. Inside each skill segment, pθ(s|bi,zi), modeled
with a Recurrent Neural Network, assigns a likelihood for the
action sequence in that segment given its boundaries and a
choice of latent skill.

We refer to the original work for details about model train-
ing. Of note for us, the variational inference method used by
CompILE also learns a boundary prediction network, which
takes a solution and outputs the most likely skill boundaries.
Thus, after CompILE is trained, we can use it to segment any
ConPoLe solution. This yields our last simplification method:

Skills: Infer high-level skill segments in the solution’s ax-
iom sequence, then select the states that immediately fol-
low each skill boundary.

Note that skills are learned from sequences of axioms, not
their specific parameters (e.g. subtract something from both
sides, without regard to what value to subtract). This already
introduces some level of abstraction and simplifies the input
to CompILE. The rate parameter λ used in the Poisson prior
of p(bi|bi−1) controls the expected number of segments in-
ferred in a given solution. This allows us to tune the abstrac-
tion level of simplified solutions, in a similar fashion to the
other methods we described.

Comparing simplification methods
We evaluate these simplification methods with both offline
analyses and a human evaluation. We start by asking whether

the simplification methods yield different notions of “impor-
tant steps” in practice. Can we find distinctive patterns in the
steps they select?

Figure 2 shows two measures of the average difference
between simplifications produced by each pair of methods.
On Figure 2(a), the difference between two simplifications is
measured by Jaccard distance: we treat the boundaries placed
by each method in the same solution as two sets B1 and B2,
and compute DJ(B1,B2) = 1−|B1∩B2|/|B1∪B2|. Since Jac-
card is a very strict measure, in Figure 2(b), we use a softer
metric that is similar to the Edit Distance between strings: we
compute how many operations are necessary to transform one
set of boundaries into another, where atomic operations are
duplicating a boundary and moving boundaries by one step,
normalized by the maximum possible number of operations
given the solution’s lengths. Both metrics indicate that all 4
methods have some level of agreement, but also significant
differences.

We further explore their differences in two analyses. Fig-
ure 3 shows the distribution of the average length of each of
these methods in solutions of varying lengths. Importantly,
all methods were calibrated to have a median compression of
50%. Yet we observe that they distribute abstraction levels
unevenly, and differently from each other.

Finally, Table 1 shows a kind of “fingerprint” of the be-
havior for each method: the most common axioms surround-
ing the states selected to be kept. Each pattern is an axiom
trigram: one axiom used to derive the state right before the
selected state, the axiom that derived the selected state, and
the axiom that then followed in the original solution. Dis-
tance and NDistance select states very frequently surrounded
by a small number of axiom patterns. Uncertainty is signif-
icantly more diverse than the distance-based methods, and
Skills even more so. Altogether, these analyses show that the
methods provide distinct characterizations of the importance
of solution steps.

Evaluating Human Preferences
We next set out to determine whether the above solution sim-
plification methods yield good solutions according to human
judges.

Materials We generated 100 equations with solutions using
the Common Core Equations environment. We then applied
each of the four simplification methods above to all equa-
tions, obtaining four simplified solutions for each equation.
Asking humans to directly compare different simplifications
to one another is challenging because the number of steps se-
lected often differs between methods for any given problem,
and yields a strong visual confound. Therefore, we instead
chose to evaluate the quality of solutions compared to a ran-
dom control that matches the simplification length. In other
words, for each problem pi, with a corresponding formal so-
lution si, and each simplification method m j, m j(si) is a sim-
plification of si that starts with p, ends in a solution state, and

Figure 3: Distribution of solution lengths after simplification
for each method. Lines show the mean relative length for
each method (simplified length over original length); bands
show standard deviation around the mean. Although all meth-
ods were tuned to have a median relative length of 1

2 , they
produce distinctive distributions of relative lengths.

Method Frequent axioms surrounding selected
states

Skills eval→ mul1→ eval (8.1%)
assoc→ eval→ div (2.8%)
eval→ add0→ assoc (2.6%)

NDistance eval→ mul1→ eval (32.8%)
eval→ eval→ mul1 (10.7%)
assoc→ eval→ mul1 (6.4%)

Distance eval→ mul1→ eval (20.7%)
eval→ eval→ mul1 (6.6%)
assoc→ eval→ mul1 (5.5%)

Uncertainty eval→ assoc→ eval (4.9%)
add0→ assoc→ eval (4.4%)
sub→ assoc→ eval (4.2%)

Table 1: Axiom trigram patterns around the states selected
by each simplification method. In each trigram, the axiom in
the middle was used to derive a state in a simplified solution;
the frequency in parenthesis shows the fraction of selected
states across all solutions that are surrounded by that pattern.
The axioms shown here are eval (evaluate an operation with
constants), mul1 (remove a multiplication by one), add0 (re-
move an addition of zero), assoc (associativity), div and sub
(divide or subtract a term on both sides of the equation). Dis-
tance and NDistance capture the same 3 patterns, with high
concentration on the most frequent trigrams. Skills and Un-
certainty are more diverse in where they place boundaries,
with distinct patterns across methods.

Figure 4: Example of human task. Two solutions to the same
equation are shown side-by-side: both are selected steps from
a longer formal solution, with matching lengths.

is a subset of si; we produce a random simplification mrand
j (si)

for comparison that has the same first and last states, and se-
lects the same number of intermediate steps from si uniformly
at random.

Participants For each simplification method, we recruited
18 participants from Amazon Mechanical Turk, that each
evaluated 10 pairs of solutions selected randomly from the
original set of 100 equations. Thus, we recruited a total
of 72 participants, producing 720 evaluations (180 for each
method).

Methods Participants were told that they were helping to
improve automated tutors: “These computer tutors can help
students learn to solve equations, fractions or other problems.
But the computer often finds complicated solutions that are
hard for students to understand! Your task is to compare
different solutions generated by a program and choose the
one you think would be most clear and helpful for students.”
In each evaluation (Figure 4), we showed a problem (a lin-
ear equation) and two simplified solutions, one produced by
one of the described methods and one produced by random
simplification matched in length. Their order on the screen
was randomized. Given a pair of solutions, participants were
asked to judge them based on their helpfulness for an alge-
bra student. They could choose from 4 options: “Solution 1
[or 2] would be most helpful for a student”, or, in case they
were thought to be equivalent, either “All solutions would be
equally helpful for a student” or “None of the solutions would
be helpful for a student”.

Results
Figure 5 shows the results of two convergent analyses of the
results. Figure 5 (left) shows the difference between the frac-
tion of responses where each method’s simplification was

Figure 5: Left: difference between the fraction of human
judgements where each method was preferred and those
where the random simplification was preferred. Right: fitted
Beta coefficients to each simplification method when predict-
ing human scores in a mixed-effects linear regression. Er-
ror bars are 95% confidence intervals. Both analyses show
Skills as significantly better than random simplification, un-
like other methods.

chosen and the fraction in which the random simplification
was chosen instead. A positive number thus means that the
method’s simplification was chosen more often. In this analy-
sis, judgements where both solutions were considered equiv-
alent (either “both would be equally helpful” or “none would
be helpful”) are ignored. Figure 5 (right) shows an analysis
considering all data points: we model participants as random
effects and the method as a fixed effect in a mixed-effects
linear regression, where we predict a score that summarizes
the human judgement (1 when the method’s solution was pre-
ferred, -1 when the random simplification was preferred, and
0 otherwise). We model s ∼ M + (1 | P) with s being the
vector of human scores, M being a fixed slope for each sim-
plification method and P denoting participants.

We observe that Skills was the most successful method:
it was the only method chosen significantly more often than
random at the 95% confidence level. Both distance-based
methods performed similarly to each other, and Uncertainty’s
simplifications were chosen less often than the random sim-
plifications (though not significantly). These results suggest
that the best simplifications for humans are produced not by
analyzing individual transitions (as Uncertainty, Distance and
NDistance do), but rather by finding meaningful abstract sub-
sequences (which Skills attempts to do explicitly). More-
over, this result indirectly supports the intuition that human
reasoning about mathematical solutions is hierarchical: one
might first decide to apply a high-level skill (e.g., “simplify
the right-hand side of the equation”), which will necessitate a

Figure 6: t-SNE visualization of states that were selected exclusively by each simplification method (Distance and NDistance
shown aggregated), on top of states that were present in solutions preferred by humans but not in their alternatives. We also
identify one state from the region where each method tends to focus more than the others.

sequence of smaller steps (e.g., doing a series of calculations
with constants); then another (e.g., “isolate the unknown”),
and so on. Large changes or uncertainty in the middle of ap-
plying the skill might then be less important for conveying
the solution than the sequence of skills that is applied.

Visualizing Preferred States
The latent space that ConPoLe uses for equations allows us
to further explore (i) what states humans tend to prefer, and
(ii) what states each of the methods tend to select more often.
Figure 6 shows a t-SNE (Van der Maaten & Hinton, 2008)
projection that illustrates these preferences both of methods
and of human evaluators. Here, each point corresponds to an
equation – either one of the starting equations generated for
human evaluation or one of the intermediate states in the com-
plete solutions. To understand which states humans prefer to
be included in solutions, we show the states that were present
in simplified solutions that were chosen by human evalua-
tors but not in their alternatives (blue points, reproduced in
all three plots). Thus, these states are only taken from so-
lutions where all participants agreed on what was the most
clear simplification between the two choices2. We addition-
ally show the states that were selected exclusively by each
method. In other words, we display a state here if any of the
given methods was the only to select that state when simpli-
fying the original formal solution.

Skills is the most parsimonious method: only 76 states ap-
pear exclusively in simplifications produced by Skills, com-
pared to 114 by the distance-based methods and 142 by Un-
certainty. We notice that the ConPoLe latent space is highly
structured: when projected to 2 dimensions with either PCA
or t-SNE, it reveals a U-shape where solution states are in
one end and the longer starting equations cluster on the other
end. Compared to other methods, Uncertainty tends to select
more states at the beginning (when equations are longer are

2Since participants were asked to judge whole solutions, even
full agreement might be a noisy indication of state-wise preference.

more actions are available), and fewer states closer to the so-
lution. Distance distinctly selects states at the intermediate
stages at a much higher density than other methods. In con-
trast, Skills spreads states more uniformly (including at the
very end, where fewer states were distinctively preferred by
humans). Furthermore, we notice gaps between clusters of
states preferred by participants, which indicates a hierarchi-
cal structure in solution states that the explicit approach of
Skills might capture better.

Discussion and Conclusion
Arguments may be good or bad for many reasons. Even
among valid mathematical arguments some are better. Of all
steps in a complete formal derivation, only a selected few are
explicitly written down. In our investigation of computational
methods that attempt to reproduce this selection of most im-
portant states, a hierarchical approach based on discovering
latent skills in the underlying solutions yielded the most clear
simplifications, according to a human evaluation.

One aspect that is not captured by our methods is that the
most appropriate level of abstraction for communicating a
given solution depends on the target reader. For example, for
a student at the undergraduate level, any linear equation such
as the ones we used here could be presented as being solved
in a single step. This would not be true for a middle-school
student working through their first equations. Understanding
how to computationally characterize the preferred abstraction
level for individuals is an important avenue for future work.

Finally, simplifying by selecting solution steps can be lim-
ited if the original solution takes unnatural paths to start with.
For example, after subtracting two equal terms, producing 0,
ConPoLe often keeps the “+ 0” in the equation for several
steps while working on other parts, before eliminating it with
one of the axioms. Humans prefer to simplify early, but that
preference does not naturally arise in a learned solver like
ConPoLe. How can we characterize these preferences and
train models that share them?

References
Aristotle. (2018). The organon: Or logical trea-

tises of aristotle: With the introduction of porphyry.
Creative Media Partners, LLC. Retrieved from
https://books.google.com/books?id=23KgvgEACAAJ

Barreto, A., Borsa, D., Hou, S., Comanici, G., Aygün, E.,
Hamel, P., . . . others (2019). The option keyboard combin-
ing skills in reinforcement learning. In Proceedings of the
33rd international conference on neural information pro-
cessing systems (pp. 13052–13062).

Bencivenga, E. (1979). On good and bad arguments. Journal
of Philosophical Logic, 8(1), 247–259.

Bourbaki, N. (2004). Theory of sets. In Theory of sets (pp.
65–129). Springer.

Crow, T., Luxton-Reilly, A., & Wuensche, B. (2018).
Intelligent tutoring systems for programming educa-
tion: A systematic review. In Proceedings of
the 20th australasian computing education confer-
ence (p. 53–62). New York, NY, USA: Asso-
ciation for Computing Machinery. Retrieved from
https://doi.org/10.1145/3160489.3160492 doi:
10.1145/3160489.3160492

De Bruijn, N. G. (1994). A survey of the project automath.
In Studies in logic and the foundations of mathematics
(Vol. 133, pp. 141–161). Elsevier.

Kipf, T., Li, Y., Dai, H., Zambaldi, V., Sanchez-Gonzalez, A.,
Grefenstette, E., . . . Battaglia, P. (2019). Compile: Compo-
sitional imitation learning and execution. In International
conference on machine learning (pp. 3418–3428).

Poesia, G., Dong, W., & Goodman, N. (2021). Contrastive
reinforcement learning of symbolic reasoning domains. In
A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan
(Eds.), Advances in neural information processing sys-
tems.

Ritter, S., Anderson, J. R., Koedinger, K. R., & Corbett, A.
(2007). Cognitive tutor: Applied research in mathemat-
ics education. Psychonomic bulletin & review, 14(2), 249–
255.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research, 9(11).

Weston, A. (2018). A rulebook for arguments. Hackett Pub-
lishing.

